Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(39): e2306343120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725648

RESUMEN

The oxidation of organic carbon contained within sedimentary rocks ("petrogenic" carbon, or hereafter OCpetro) emits nearly as much CO2 as is released by volcanism, thereby playing a key role in the long-term global C budget. High erosion rates in mountains have been shown to increase OCpetro oxidation. However, these settings also export unweathered material that may continue to react in downstream floodplains. The relative importance of OCpetro oxidation in mountains versus floodplains remains difficult to assess as disparate methods have been used in the different environments. Here, we investigate the sources and fluxes of rhenium (Re) in the Rio Madre de Dios to quantify OCpetro oxidation from the Andes to the Amazon floodplain using a common approach. Dissolved rhenium concentrations (n = 131) range from 0.01 to 63 pmol L-1 and vary depending on lithology and geomorphic setting. We find that >75% of the dissolved Re derives from OCpetro oxidation and that this proportion increases downstream. We estimate that in the Andes, OCpetro oxidation releases 11.2+4.5/-2.8 tC km-2 y-1 of CO2, which corresponds to ~41% of the total OCpetro denudation (sum of oxidized and solid OCpetro). A Re mass balance across the Rio Madre de Dios shows that 46% of OCpetro oxidation takes place in the Andes, 14% in the foreland-lowlands, and 40% in the Andean-fed floodplains. This doubling of OCpetro oxidation flux downstream of the Andes demonstrates that, when present, floodplains can greatly increase OCpetro oxidation and CO2 release.

2.
Nat Commun ; 14(1): 3814, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37385986

RESUMEN

Wildfire alters the hydrologic cycle, with important implications for water supply and hazards including flooding and debris flows. In this study we use a combination of electrical resistivity and stable water isotope analyses to investigate the hydrologic response during storms in three catchments: one unburned and two burned during the 2020 Bobcat Fire in the San Gabriel Mountains, California, USA. Electrical resistivity imaging shows that in the burned catchments, rainfall infiltrated into the weathered bedrock and persisted. Stormflow isotope data indicate that the amount of mixing of surface and subsurface water during storms was similar in all catchments, despite higher streamflow post-fire. Therefore, both surface runoff and infiltration likely increased in tandem. These results suggest that the hydrologic response to storms in post-fire environments is dynamic and involves more surface-subsurface exchange than previously conceptualized, which has important implications for vegetation regrowth and post-fire landslide hazards for years following wildfire.


Asunto(s)
Incendios Forestales , Electricidad , Inundaciones , Hidrología , Agua
3.
Sci Adv ; 7(42): eabh4224, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34652934

RESUMEN

The Paleocene-Eocene Thermal Maximum (PETM; ~55.9 Ma) was a geologically rapid warming period associated with carbon release, which caused a marked increase in the hydrological cycle. Here, we use lithium (Li) isotopes to assess the global change in weathering regime, a critical carbon drawdown mechanism, across the PETM. We find a negative Li isotope excursion of ~3‰ in both global seawater (marine carbonates) and in local weathering inputs (detrital shales). This is consistent with a very large delivery of clays to the oceans or a shift in the weathering regime toward higher physical erosion rates and sediment fluxes. Our seawater records are best explained by increases in global erosion rates of ~2× to 3× over 100 ka, combined with model-derived weathering increases of 50 to 60% compared to prewarming values. Such increases in weathering and erosion would have supported enhanced carbon burial, as both carbonate and organic carbon, thereby stabilizing climate.

4.
Appl Environ Microbiol ; 87(20): e0133921, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34347514

RESUMEN

Permafrost soils store approximately twice the amount of carbon currently present in Earth's atmosphere and are acutely impacted by climate change due to the polar amplification of increasing global temperature. Many organic-rich permafrost sediments are located on large river floodplains, where river channel migration periodically erodes and redeposits the upper tens of meters of sediment. Channel migration exerts a first-order control on the geographic distribution of permafrost and floodplain stratigraphy and thus may affect microbial habitats. To examine how river channel migration in discontinuous permafrost environments affects microbial community composition, we used amplicon sequencing of the 16S rRNA gene on sediment samples from floodplain cores and exposed riverbanks along the Koyukuk River, a large tributary of the Yukon River in west-central Alaska. Microbial communities are sensitive to permafrost thaw: communities found in deep samples thawed by the river closely resembled near-surface active-layer communities in nonmetric multidimensional scaling analyses but did not resemble floodplain permafrost communities at the same depth. Microbial communities also displayed lower diversity and evenness in permafrost than in both the active layer and permafrost-free point bars recently deposited by river channel migration. Taxonomic assignments based on 16S and quantitative PCR for the methyl coenzyme M reductase functional gene demonstrated that methanogens and methanotrophs are abundant in older permafrost-bearing deposits but not in younger, nonpermafrost point bar deposits. The results suggested that river migration, which regulates the distribution of permafrost, also modulates the distribution of microbes potentially capable of producing and consuming methane on the Koyukuk River floodplain. IMPORTANCE Arctic lowlands contain large quantities of soil organic carbon that is currently sequestered in permafrost. With rising temperatures, permafrost thaw may allow this carbon to be consumed by microbial communities and released to the atmosphere as carbon dioxide or methane. We used gene sequencing to determine the microbial communities present in the floodplain of a river running through discontinuous permafrost. We found that the river's lateral movement across its floodplain influences the occurrence of certain microbial communities-in particular, methane-cycling microbes were present on the older, permafrost-bearing eroding riverbank but absent on the newly deposited river bars. Riverbank sediment had microbial communities more similar to those of the floodplain active-layer samples than permafrost samples from the same depth. Therefore, spatial patterns of river migration influence the distribution of microbial taxa relevant to the warming Arctic climate.


Asunto(s)
Microbiota , Hielos Perennes/microbiología , Ríos/microbiología , Alaska , Ciclo del Carbono , Movimientos del Agua
5.
Nature ; 595(7867): 394-398, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34262211

RESUMEN

The evolution of the global carbon and silicon cycles is thought to have contributed to the long-term stability of Earth's climate1-3. Many questions remain, however, regarding the feedback mechanisms at play, and there are limited quantitative constraints on the sources and sinks of these elements in Earth's surface environments4-12. Here we argue that the lithium-isotope record can be used to track the processes controlling the long-term carbon and silicon cycles. By analysing more than 600 shallow-water marine carbonate samples from more than 100 stratigraphic units, we construct a new carbonate-based lithium-isotope record spanning the past 3 billion years. The data suggest an increase in the carbonate lithium-isotope values over time, which we propose was driven by long-term changes in the lithium-isotopic conditions of sea water, rather than by changes in the sedimentary alterations of older samples. Using a mass-balance modelling approach, we propose that the observed trend in lithium-isotope values reflects a transition from Precambrian carbon and silicon cycles to those characteristic of the modern. We speculate that this transition was linked to a gradual shift to a biologically controlled marine silicon cycle and the evolutionary radiation of land plants13,14.


Asunto(s)
Ciclo del Carbono , Carbono , Isótopos , Litio , Silicio , Organismos Acuáticos , Carbono/análisis , Carbono/metabolismo , Sedimentos Geológicos/química , Isótopos/análisis , Litio/análisis , Plantas , Agua de Mar/química , Silicio/análisis , Silicio/metabolismo
6.
Geobiology ; 19(6): 618-630, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34105248

RESUMEN

Iron is a micronutrient critical to fundamental biological processes including respiration and photosynthesis, and it can therefore impact primary and heterotrophic productivity. Yet in oxic environments, iron is highly insoluble, rendering it, in principle, unavailable as a nutrient for biological growth. Life has "solved" this problem via the invention of iron chelates, known as siderophores, that keep iron available for microbial productivity. In this work, we examined the impact of siderophore synthesis on the speciation, mobility, and bioavailability of iron from rock-forming silicate minerals-shedding new light on the mechanisms by which microbes use mineral substrates to support primary productivity, as well as the consequent effects on silicate dissolution. Growth experiments were performed with Shewanella oneidensis MR-1 in an oxic, iron-depleted minimal medium, amended with olivine minerals as the sole source of iron. Experiments included the wild-type strain MR-1, and a siderophore synthesis gene deletion mutant strain (ΔMR-1). Relative to MR-1, ΔMR-1 exhibited a very pronounced growth penalty and an extended lag phase. However, substantial growth of ΔMR-1, comparable to MR-1 growth, was observed when the mutant strain was provided with siderophores in the form of either filtrate from a well-grown MR-1 culture, or commercially available deferoxamine. These observations suggest that siderophores are critical for S. oneidensis to acquire iron from olivine. Growth-limiting concentrations of deferoxamine amendments were observed to be ≤5-10 µM, concentrations significantly lower than previously recorded as necessary to impact mineral dissolution rates. X-ray photoelectric spectroscopy analyses of the incubated olivine surfaces suggest that siderophores deplete mineral surface layers of ferric iron. Combined, these results demonstrate that low micromolar concentrations of siderophores can effectively mobilize iron bound within silicate minerals, supporting very significant biological growth in limiting environments. The specific mechanism would involve siderophores removing a protective layer of nanometer-thick iron oxides, enhancing silicate dissolution and nutrient bioavailability.


Asunto(s)
Fenómenos Biológicos , Sideróforos , Disponibilidad Biológica , Hierro , Compuestos de Hierro , Compuestos de Magnesio , Minerales , Nutrientes , Shewanella , Silicatos
7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001595

RESUMEN

Fly ash-the residuum of coal burning-contains a considerable amount of fossilized particulate organic carbon (FOCash) that remains after high-temperature combustion. Fly ash leaks into natural environments and participates in the contemporary carbon cycle, but its reactivity and flux remained poorly understood. We characterized FOCash in the Chang Jiang (Yangtze River) basin, China, and quantified the riverine FOCash fluxes. Using Raman spectral analysis, ramped pyrolysis oxidation, and chemical oxidation, we found that FOCash is highly recalcitrant and unreactive, whereas shale-derived FOC (FOCrock) was much more labile and easily oxidized. By combining mass balance calculations and other estimates of fly ash input to rivers, we estimated that the flux of FOCash carried by the Chang Jiang was 0.21 to 0.42 Mt C⋅y-1 in 2007 to 2008-an amount equivalent to 37 to 72% of the total riverine FOC export. We attributed such high flux to the combination of increasing coal combustion that enhances FOCash production and the massive construction of dams in the basin that reduces the flux of FOCrock eroded from upstream mountainous areas. Using global ash data, a first-order estimate suggests that FOCash makes up to 16% of the present-day global riverine FOC flux to the oceans. This reflects a substantial impact of anthropogenic activities on the fluxes and burial of fossil organic carbon that has been made less reactive than the rocks from which it was derived.


Asunto(s)
Carbono/metabolismo , Ceniza del Carbón/efectos adversos , Carbón Mineral/efectos adversos , Monitoreo del Ambiente , Carbono/química , Ciclo del Carbono , China/epidemiología , Humanos , Minerales/química , Ríos
8.
Sci Adv ; 5(6): eaav7110, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31206017

RESUMEN

Infrequent extreme events such as large earthquakes pose hazards and have lasting impacts on landscapes and biogeochemical cycles. Sediments provide valuable records of past events, but unambiguously identifying event deposits is challenging because of nonlinear sediment transport processes and poor age control. Here, we have been able to directly track the propagation of a tectonic signal into stratigraphy using reservoir sediments from before and after the 2008 Wenchuan earthquake. Cycles in magnetic susceptibility allow us to define a precise annual chronology and identify the timing and nature of the earthquake's sedimentary record. The grain size and Rb/Sr ratio of the sediments responded immediately to the earthquake. However, the changes were muted until 2 years after the event, when intense monsoonal runoff drove accumulation of coarser grains and lower Rb/Sr sediments. The delayed response provides insight into how climatic and tectonic agents interact to control sediment transfer and depositional processes.

9.
Geobiology ; 17(4): 401-416, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30734464

RESUMEN

Silicate minerals represent an important reservoir of nutrients at Earth's surface and a source of alkalinity that modulates long-term geochemical cycles. Due to the slow kinetics of primary silicate mineral dissolution and the potential for nutrient immobilization by secondary mineral precipitation, the bioavailability of many silicate-bound nutrients may be limited by the ability of micro-organisms to actively scavenge these nutrients via redox alteration and/or organic ligand production. In this study, we use targeted laboratory experiments with olivine and the siderophore deferoxamine B to explore how microbial ligands affect nutrient (Fe) release and the overall rate of mineral dissolution. Our results show that olivine dissolution rates are accelerated in the presence of micromolar concentrations of deferoxamine B. Based on the non-linear decrease in rates with time and formation of a Fe3+ -ligand complex, we attribute this acceleration in dissolution rates to the removal of an oxidized surface coating that forms during the dissolution of olivine at circum-neutral pH in the presence of O2 and the absence of organic ligands. While increases in dissolution rates are observed with micromolar concentrations of siderophores, it remains unclear whether such conditions could be realized in natural environments due to the strong physiological control on microbial siderophore production. So, to contextualize our experimental results, we also developed a feedback model, which considers how microbial physiology and ligand-promoted mineral dissolution kinetics interact to control the extent of biotic enhancement of dissolution rates expected for different environments. The model predicts that physiological feedbacks severely limit the extent to which dissolution rates may be enhanced by microbial activity, though the rate of physical transport modulates this limitation.


Asunto(s)
Compuestos de Hierro/química , Compuestos de Magnesio/química , Microbiota/fisiología , Sideróforos/química , Silicatos/química , Cinética , Modelos Biológicos , Solubilidad
10.
Anal Bioanal Chem ; 411(3): 765-776, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30467768

RESUMEN

The isotopic composition of iron, zinc, copper, and cadmium (δ56Fe, δ66Zn, δ65Cu, and δ114Cd) are novel and promising tools to study the metabolism and homeostasis of trace metals in the human body. Serum δ65Cu has been proposed as a potential tool for diagnosis of cancer in liquid biopsy, and other metals may have similar utility. However, accurate analysis of trace metal isotopes is challenging because of the difficulties in purifying the metals from biological samples. Here we developed a simple and rapid method for sequential purification of Cu, Fe, Zn, and Cd from a single blood plasma sample. By using a combination of 11 M acetic acid and 4 M HCl in the first steps of column chemistry on AG-MP1 resin, we dramatically improve the separation of Cu from matrix elements compared to previous methods which use concentrated HCl alone. Our new method achieves full recovery of Cu, Fe, Zn, and Cd to prevent column-induced isotope fractionation effects, and effectively separates analytes from the matrix in order to reduce polyatomic interferences during isotope analysis. Our methods were verified by the analysis of isotope standards, a whole blood reference material, and a preliminary sample set including five plasma samples from healthy individuals and five plasma samples from cancer patients. This new method simplifies preparation of blood samples for metal isotope analysis, accelerating multi-isotope approaches to medical studies and contributing to our understanding of the cycling of Fe, Zn, Cu, and Cd in the human body. Graphical abstract ᅟ.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Cobre/sangre , Cobre/aislamiento & purificación , Isótopos/sangre , Isótopos/aislamiento & purificación , Biopsia Líquida , Adsorción , Resinas de Intercambio Aniónico , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Estudios de Casos y Controles , Fraccionamiento Químico , Cobre/normas , Femenino , Humanos , Isótopos/normas , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Estándares de Referencia , Solventes/química , Oligoelementos/sangre , Oligoelementos/aislamiento & purificación
11.
Sci Rep ; 8(1): 14809, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287836

RESUMEN

Evidence for relationships between seismotectonic activity and dissolved weathering fluxes remains limited. Motivated by the occurrence of new springs emerging after the 2016 Kumamoto earthquake and supported by historical groundwater data, this study focuses on the long-term effect of near-surface structural deformation on the contribution of deep, highly saline fluids to the solute fluxes from the Aso caldera, Kyushu, Japan. Available hydrologic and structural data suggest that concentrated, over-pressured groundwaters migrate to the surface when new hydraulic pathways open during seismic deformation. These new springs have a hydrochemical fingerprint (including δDH2O, δ18OH2O, δ7Li, δ11B, δ18OSO4, and δ34SSO4) indistinguishable from long-established confined groundwater that likely reflects a mixture of infiltrated meteoric water with high-sulfate hydrothermal fluids. A comparison of historical hydrochemistry data and patterns of past seismicity suggests that discharge of deep fluids is associated with similar deformation structures to those observed during the Kumamoto earthquake, and that seismic activity plays an important role over historic timescales in delivering the majority of the solutes to the caldera outlet, sustaining fluxes that are amongst the world's highest. This upwelling mechanism might be relevant for other systems too, and could contribute to the over-proportional share of active volcanic areas in global weathering fluxes.

12.
Proc Natl Acad Sci U S A ; 114(33): 8716-8721, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760954

RESUMEN

Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2 Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

13.
Nat Commun ; 7: 11147, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-27048776

RESUMEN

The end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and release of CO2 and other volcanic volatiles has been implicated in the extinction. However, the timing of marine biotic recovery versus CAMP eruptions remains uncertain. Here we use Hg concentrations and isotopes as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg levels rise in the extinction interval, peak before the appearance of the first Jurassic ammonite, remain above background in association with a depauperate fauna, and fall to pre-extinction levels during significant pelagic and benthic faunal recovery. Hg isotopes display no significant mass independent fractionation within the extinction and depauperate intervals, consistent with a volcanic origin for the Hg. The Hg and palaeontological evidence from the same archive indicate that significant biotic recovery did not begin until CAMP eruptions ceased.


Asunto(s)
Dióxido de Carbono/química , Extinción Biológica , Fósiles , Mercurio/análisis , Animales , Evolución Biológica , Isótopos de Carbono , Sedimentos Geológicos/química , Isótopos de Mercurio , Nevada , Erupciones Volcánicas/análisis
14.
Environ Sci Technol ; 48(14): 7730-7, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24952958

RESUMEN

Understanding biogeochemical cycling of trace metals in the ocean requires information about variability in metal concentrations and distribution over short, e.g., diel, time scales. Such variability and the factors that influence it are poorly characterized. To address this shortcoming, we measured trace metal concentrations in the total dissolved, colloidal, and soluble fractions every 3-4 h for several consecutive days and nights in surface waters from a coastal station. Our results show that both the concentration and the size partitioning of some biologically essential (Fe, Cu, Co, and Cd) and anthropogenic (Pb) metals are subjected to diel variations that may be related to both inorganic and biological processes (e.g., photolysis of high-molecular-weight dissolved organic matter, photoinduced reduction/oxidation of metal(hydrous)oxides, uptake by growing phytoplankton, degradation of organic matter, lysis, and grazing). The largest fluctuations were observed in the soluble and colloidal pools. Soluble Fe varied during the day-night cycle by a factor of 40, and the contribution of colloidal Pb to the total dissolved fraction increased from 6±3% during the day to as much as 70-80% during the night. Our results suggest that changes occurring over time scales of hours need to be considered when collecting and interpreting trace metal data from the surface ocean.


Asunto(s)
Ecosistema , Islas , Metales/análisis , Agua de Mar/química , California , Fraccionamiento Químico , Coloides , Geografía , Luz , Fitoplancton/metabolismo , Solubilidad , Propiedades de Superficie , Temperatura
15.
Nature ; 507(7492): 346-9, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24646998

RESUMEN

The observed stability of Earth's climate over millions of years is thought to depend on the rate of carbon dioxide (CO2) release from the solid Earth being balanced by the rate of CO2 consumption by silicate weathering. During the Cenozoic era, spanning approximately the past 66 million years, the concurrent increases in the marine isotopic ratios of strontium, osmium and lithium suggest that extensive uplift of mountain ranges may have stimulated CO2 consumption by silicate weathering, but reconstructions of sea-floor spreading do not indicate a corresponding increase in CO2 inputs from volcanic degassing. The resulting imbalance would have depleted the atmosphere of all CO2 within a few million years. As a result, reconciling Cenozoic isotopic records with the need for mass balance in the long-term carbon cycle has been a major and unresolved challenge in geochemistry and Earth history. Here we show that enhanced sulphide oxidation coupled to carbonate dissolution can provide a transient source of CO2 to Earth's atmosphere that is relevant over geological timescales. Like drawdown by means of silicate weathering, this source is probably enhanced by tectonic uplift, and so may have contributed to the relative stability of the partial pressure of atmospheric CO2 during the Cenozoic. A variety of other hypotheses have been put forward to explain the 'Cenozoic isotope-weathering paradox', and the evolution of the carbon cycle probably depended on multiple processes. However, an important role for sulphide oxidation coupled to carbonate dissolution is consistent with records of radiogenic isotopes, atmospheric CO2 partial pressure and the evolution of the Cenozoic sulphur cycle, and could be accounted for by geologically reasonable changes in the global dioxygen cycle, suggesting that this CO2 source should be considered a potentially important but as yet generally unrecognized component of the long-term carbon cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...