Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 86(6): 2876-81, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24552424

RESUMEN

The structural and chemical homogeneity of monolithic columns is a key parameter for high efficiency stationary phases in liquid chromatography. Improved characterization techniques are needed to better understand the polymer morphology and its optimization. Here the analysis of polymer monoliths by scanning transmission X-ray microscopy (STXM) is presented for the first time. Poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) [poly(BuMA-co-EDMA)] monoliths containing encapsulated divinylbenzene (DVB) nanoparticles were characterized by STXM, which gives a comprehensive, quantitative chemical analysis of the monolith at a spatial resolution of 30 nm. The results are compared with other methods commonly used for the characterization of polymer monoliths [scanning electron microscopy (SEM), transmission electron microscopy (TEM), mercury porosimetry, and nitrogen adsorption]. The technique permitted chemical identification and mapping of the nanoparticles within the polymeric scaffold. Residual surfactant, which was used during the manufacture of the nanoparticles, was also detected. We show that STXM can give more in-depth chemical information for these types of materials and therefore lead to a better understanding of the link between polymer morphology and chromatographic performance.

2.
Phys Chem Chem Phys ; 14(14): 4835-43, 2012 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-22395205

RESUMEN

Synchrotron-based scanning transmission X-ray spectromicroscopy (STXM) was used to characterize the local chemical environment at and around the platinum particles in the membrane (PTIM) which form in operationally tested (end-of-life, EOL) catalyst coated membranes (CCMs) of polymer electrolyte membrane fuel cells (PEM-FC). The band of metallic Pt particles in operationally tested CCM membranes was imaged using transmission electron microscopy (TEM). The cathode catalyst layer in the beginning-of-life (BOL) CCMs was fabricated using commercially available catalysts created from Pt precursors with and without nitrogen containing ligands. The surface composition of these catalyst powders was measured by X-ray Photoelectron Spectroscopy (XPS). The local chemical environment of the PTIM in EOL CCMs was found to be directly related to the Pt precursor used in CCM fabrication. STXM chemical mapping at the N 1s edge revealed a characteristic spectrum at and around the dendritic Pt particles in CCMs fabricated with nitrogen containing Pt-precursors. This N 1s spectrum was identical to that of the cathode and different from the membrane. For CCM samples fabricated without nitrogen containing Pt-precursors the N 1s spectrum at the Pt particles was indistinguishable from that of the adjacent membrane. We interpret these observations to indicate that nitrogenous ligands in the nitrogen containing precursors, or decomposition product(s) from that source, are transported together with the dissolved Pt from the cathode into the membrane as a result of the catalyst degradation process. This places constraints on possible mechanisms for the PTIM band formation process.

3.
J Phys Chem B ; 113(7): 1869-76, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19175298

RESUMEN

The chemical changes and absolute rates in radiation damage to polyethylene terephthalate (PET) caused by soft X-rays and energetic electrons have been measured using a scanning transmission X-ray microscope (STXM). Electron beam damage at two different dose rates and a range of doses was performed in an 80 keV transmission electron microscope (TEM). The STXM beam was used to create damage patterns with systematically varied doses of monochromatic soft X-rays on an adjacent piece of the same PET sample. NEXAFS spectroscopy at the C 1s and O 1s edges was used to study the chemistry of the radiation damage and to determine quantitative critical doses for PET damage by both types of radiation. The spectral changes were similar for damage by electrons and X-rays, indicating the radiation chemistry is dominated by secondary processes, not the primary event. The critical dose for chemical changes determined from C 1s spectral features is 4.2(6) x 10(8) Gy and was the same for soft X-rays and electrons within measurement uncertainties. The critical dose for specific damage processes (as defined by changes in several different, bond-specific spectral features) was found to be similar in the C 1s region and was comparable between C 1s and O 1s edges for electron beam damage. There were statistically different critical doses for soft X-ray damage as probed by changes in O 1s spectral features related to carbonyl and ester bonds.

4.
Biomacromolecules ; 7(3): 836-43, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16529421

RESUMEN

The spatial distribution of the linear dichroic signal associated with aligned beta-sheets in a microtomed section of a Bombyx mori cocoon silk fiber was derived from scanning transmission X-ray microscopy (STXM). The intense C 1s --> pi(amide) peak at 288.25 eV was found to have negligible dichroic signal in transverse sections but a large dichroic signal in longitudinal sections. This is consistent with other measurements of the orientation of the aligned beta-sheets in silk fibers, in particular with those obtained by polarized Raman microspectroscopy to which our results are compared. When the dichroic signal strength is mapped at better than 100 nm spatial resolution, microscopic variations are found. Although the magnitude of the dichroic signal changes over a fine spatial scale, the direction of the maximum signal at any position does not change. We interpret the spatial variation of the intensity of the dichroic signal as a map of the quality of local orientation of the beta-sheets in the fiber. At sufficiently high magnification and resolution, this technique should image individual beta-sheet crystallites, although the present implementation does not achieve that. A map of the orientation parameter P(2) is derived. The average value of P(2) (-0.20 +/- 0.04) from STXM is smaller than that derived from the analysis of the amide I band in polarized Raman spectra (-0.41 +/- 0.03). This deviation is attributed to the fact that the STXM results also include the signal from unaligned regions of the protein.


Asunto(s)
Microanálisis por Sonda Electrónica/métodos , Fibroínas/química , Animales , Bombyx , Proteínas de Insectos/metabolismo , Conformación Molecular , Estructura Secundaria de Proteína , Espectrometría Raman , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA