Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(36): 11262-11268, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213585

RESUMEN

Understanding optical absorption in silicon nitride is crucial for cutting-edge technologies like photonic integrated circuits, nanomechanical photothermal infrared sensing and spectroscopy, and cavity optomechanics. Yet, the origin of its strong dependence on the film deposition and fabrication process is not fully understood. This Letter leverages nanomechanical photothermal sensing to investigate optical extinction κext at a 632.8 nm wavelength in low-pressure chemical vapor deposition (LPCVD) SiN strings across a wide range of deposition-related tensile stresses (200-850 MPa). Measurements reveal a reduction in κext from 103 to 101 ppm with increasing stress, correlated to variations in Si/N content ratio. Within the band-fluctuations framework, this trend indicates an increase of the energy bandgap with the stress, ultimately reducing absorption. Overall, this study showcases the power and simplicity of nanomechanical photothermal sensing for low absorption measurements, offering a sensitive, scattering-free platform for material analysis in nanophotonics and nanomechanics.

2.
J Phys Chem C Nanomater Interfaces ; 128(2): 984, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38264432

RESUMEN

[This corrects the article DOI: 10.1021/acs.jpcc.3c04361.].

3.
J Phys Chem C Nanomater Interfaces ; 127(45): 21915-21929, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38024195

RESUMEN

In nanomechanical photothermal absorption spectroscopy and microscopy, the measured substance becomes a part of the detection system itself, inducing a nanomechanical resonance frequency shift upon thermal relaxation. Suspended, nanometer-thin ceramic or 2D material resonators are innately highly sensitive thermal detectors of localized heat exchanges from substances on their surface or integrated into the resonator itself. Consequently, the combined nanoresonator-analyte system is a self-measuring spectrometer and microscope responding to a substance's transfer of heat over the entire spectrum for which it absorbs, according to the intensity it experiences. Limited by their own thermostatistical fluctuation phenomena, nanoresonators have demonstrated sufficient sensitivity for measuring trace analyte as well as single particles and molecules with incoherent light or focused and wide-field coherent light. They are versatile in their design, support various sampling methods-potentially including hydrated sample encapsulation-and hyphenation with other spectroscopic methods, and are capable in a wide range of applications including fingerprinting, separation science, and surface sciences.

4.
ACS Photonics ; 10(10): 3730-3739, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37869554

RESUMEN

Understanding light-matter interaction at the nanoscale requires probing the optical properties of matter at the individual nanoabsorber level. To this end, we developed a nanomechanical photothermal sensing platform that can be used as a full spectromicroscopy tool for single molecule and single particle analysis. As a demonstration, the absorption cross-section of individual gold nanorods is resolved from a spectroscopic and polarization standpoint. By exploiting the capabilities of nanomechanical photothermal spectromicroscopy, the longitudinal localized surface plasmon resonance in the NIR range is unraveled and quantitatively characterized. The polarization features of the transversal surface plasmon resonance in the VIS range are also analyzed. The measurements are compared with the finite element method, elucidating the role played by electron surface and bulk scattering in these plasmonic nanostructures, as well as the interaction between the nanoabsorber and the nanoresonator, ultimately resulting in absorption strength modulation. Finally, a comprehensive comparison is conducted, evaluating the signal-to-noise ratio of nanomechanical photothermal spectroscopy against other cutting-edge single molecule and particle spectroscopy techniques. This analysis highlights the remarkable potential of nanomechanical photothermal spectroscopy due to its exceptional sensitivity.

5.
Nano Lett ; 23(10): 4344-4350, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167540

RESUMEN

One of the challenges of nanoelectromechanical systems (NEMS) is the effective transduction of the tiny resonators. Vertical structures, such as nanomechanical pillar resonators, which are exploited in optomechanics, acoustic metamaterials, and nanomechanical sensing, are particularly challenging to transduce. Existing electromechanical transduction methods are ill-suited as they put constraints on the pillars' material and do not enable a transduction of freestanding pillars. Here, we present an electromechanical transduction method for single nanomechanical pillar resonators based on surface acoustic waves (SAWs). We demonstrate the transduction of freestanding nanomechanical platinum-carbon pillars in the first-order bending and compression mode. Since the principle of the transduction method is based on resonant scattering of a SAW by a nanomechanical resonator, our transduction method is independent of the pillar's material and not limited to pillar-shaped geometries. It represents a general method to transduce vertical mechanical resonators with nanoscale lateral dimensions.

6.
ACS Sens ; 8(4): 1462-1470, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37067504

RESUMEN

We present a novel method for the quantitative analysis of mixtures of semivolatile chemical compounds. For the first time, thermal desorption is integrated directly with nanoelectromechanical infrared spectroscopy (NEMS-IR-TD). In this new technique, an analyte mixture is deposited via nebulization on the surface of a NEMS sensor and subsequently desorbed using heating under vacuum. The desorption process is monitored in situ via infrared spectroscopy and thermogravimetric analysis. The resulting spectro-temporal maps allow for selective identification and analysis of the mixture. In addition, the corresponding thermogravimetric data allow for analysis of the desorption dynamics of the mixture components. As a demonstration, caffeine and theobromine were selectively identified and quantified from a mixture with a detection limit of less than 6 pg (about 30 fmol). With its exceptional sensitivity, NEMS-IR-TD allows for the analysis of low abundance and complex analytes with potential applications ranging from environmental sensing to life sciences.


Asunto(s)
Espectrofotometría Infrarroja
7.
Nat Commun ; 11(1): 2161, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358531

RESUMEN

Thermal detectors are a cornerstone of infrared and terahertz technology due to their broad spectral range. These detectors call for efficient absorbers with a broad spectral response and minimal thermal mass. A common approach is based on impedance-matching the sheet resistance of a thin metallic film to half the free-space impedance. Thereby, one can achieve a wavelength-independent absorptivity of up to 50%. However, existing absorber films typically require a thickness of the order of tens of nanometers, which can significantly deteriorate the response of a thermal transducer. Here, we present the application of ultrathin gold (2 nm) on top of a surfactant layer of oxidized copper as an effective infrared absorber. An almost wavelength-independent and long-time stable absorptivity of 47(3)%, ranging from 2 µm to 20 µm, can be obtained. The presented absorber allows for a significant improvement of infrared/terahertz technologies in general and thermal detectors in particular.

8.
J Phys Chem B ; 122(29): 7264-7276, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29963865

RESUMEN

To demonstrate the value of the multipulse method in revealing the nature of coupling between excited states and explore the environmental dependencies of lowest excited singlet state (S1) and intramolecular charge transfer (ICT) state equilibration, we performed ultrafast transient absorption pump-dump-probe and pump-repump-probe spectroscopies on fucoxanthin in various solvent conditions. The effects of polarity, proticity, and temperature were tested in solvents methanol at 293 and 190 K, acetonitrile, and isopropanol. We show that manipulation of the kinetic traces can produce one trace reflecting the equilibration kinetics of the states, which reveals that lower polarity, proticity, and temperature delay S1/ICT equilibration. On the basis of a two-state model representing the S1 and ICT states on the same S1/ICT potential energy surface, we were able to show that the kinetics are strictly dependent on the initial relative populations of the states as well as the decay of the ICT state to the ground state. Informed by global analysis, a systematic method for target analysis based on this model allowed us to quantify the population transfer rates throughout the life of the S1/ICT state as well as separate the S1 and ICT spectral signatures. The results are consistent with the concept that the S1 and ICT states are part of one potential energy surface.

9.
Biochim Biophys Acta Bioenerg ; 1859(5): 357-365, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29499185

RESUMEN

We have applied femtosecond transient absorption spectroscopy in pump-probe and pump-dump-probe regimes to study energy transfer between fucoxanthin and Chl a in fucoxanthin-Chl a complex from the pennate diatom Phaeodactylum tricornutum. Experiments were carried out at room temperature and 77 K to reveal temperature dependence of energy transfer. At both temperatures, the ultrafast (<100 fs) energy transfer channel from the fucoxanthin S2 state is active and is complemented by the second pathway via the combined S1/ICT state. The S1/ICT-Chl a pathway has two channels, the fast one characterized by sub-picosecond energy transfer, and slow having time constants of 4.5 ps at room temperature and 6.6 ps at 77 K. The overall energy transfer via the S1/ICT is faster at 77 K, because the fast component gains amplitude upon lowering the temperature. The pump-dump-probe regime, with the dump pulse centered in the spectral region of ICT stimulated emission at 950 nm and applied at 2 ps after excitation, proved that the S1 and ICT states of fucoxanthin in FCP are individual, yet coupled entities. Analysis of the pump-dump-probe data suggested that the main energy donor in the slow S1/ICT-Chl a route is the S1 part of the S1/ICT potential surface.


Asunto(s)
Clorofila/química , Diatomeas/química , Espectrofotometría Atómica , Xantófilas/química , Clorofila A
10.
J Phys Chem B ; 122(11): 2922-2930, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29469573

RESUMEN

We used ultrafast transient absorption spectroscopy to study excited-state dynamics of the keto-carotenoid fucoxanthin (Fx) and its two derivatives: 19'-butanoyloxyfucoxanthin (bFx) and 19'-hexanoyloxyfucoxanthin (hFx). These derivatives occur in some light-harvesting systems of photosynthetic microorganisms, and their presence is typically related to stress conditions. Even though the hexanoyl (butanoyl) moiety is not a part of the conjugated system of hFx (bFx), their absorption spectra in polar solvents exhibit more pronounced vibrational bands of the S2 state than for Fx. The effect of the nonconjugated acyloxy moiety is further observed in transient absorption spectra, which for Fx exhibit characteristic features of an intramolecular charge transfer (ICT) state in all polar solvents. For bFx and hFx, however, much weaker ICT features are detected in methanol, and the spectral markers of the ICT state disappear completely in polar, but aprotic acetonitrile. The presence of the acyloxy moiety also alters the lifetimes of the S1/ICT state. For Fx, the lifetimes are 60, 30, and 20 ps in n-hexane, acetonitrile, and methanol, whereas for bFx and hFx, these lifetimes yield 60, 60, and 40 ps, respectively. Testing the S1/ICT state lifetimes of hFx in other solvents revealed that some ICT features can be induced only in polar, protic solvents (methanol, ethanol, and ethylene glycol). Thus, bFx and hFx represent a rather rare example of a system in which a nonconjugated functional group significantly alters excited-state dynamics. By comparison with other carotenoids, we show that a keto group at the acyloxy tail, even though it is not in conjugation, affects the electron distribution along the conjugated backbone, resulting in the observed decrease of the ICT character of the S1/ICT state of bFx and hFx.


Asunto(s)
Simulación de Dinámica Molecular , Xantófilas/química , Conformación Molecular
11.
J Appl Phys ; 116(11): 114301, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25316953

RESUMEN

We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA