Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 36: 316-328, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30232024

RESUMEN

We hypothesized that changes in the mitochondrial DNA (mtDNA) would significantly influence whole body metabolism, adiposity and gene expression in response to diet. Because it is not feasible to directly test these predictions in humans we used Mitochondrial-Nuclear eXchange mice, which have reciprocally exchanged nuclear and mitochondrial genomes between different Mus musculus strains. Results demonstrate that nuclear-mitochondrial genetic background combination significantly alters metabolic efficiency and body composition. Comparative RNA sequencing analysis in adipose tissues also showed a clear influence of the mtDNA on regulating nuclear gene expression on the same nuclear background (up to a 10-fold change in the number of differentially expressed genes), revealing that neither Mendelian nor mitochondrial genetics unilaterally control gene expression. Additional analyses indicate that nuclear-mitochondrial genome combination modulates gene expression in a manner heretofore not described. These findings provide a new framework for understanding complex genetic disease susceptibility.


Asunto(s)
Adiposidad/genética , Metabolismo Energético/genética , Epistasis Genética , Regulación de la Expresión Génica , Genes Mitocondriales , Mitocondrias/genética , Mitocondrias/metabolismo , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Composición Corporal , Femenino , Perfilación de la Expresión Génica , Antecedentes Genéticos , Genoma Mitocondrial , Masculino , Ratones , Transcriptoma
2.
JCI Insight ; 2(4): e89303, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28239650

RESUMEN

Mitophagy occurs during ischemia/reperfusion (I/R) and limits oxidative stress and injury. Mitochondrial turnover was assessed in patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). Paired biopsies of right atrial appendage before initiation and after weaning from CPB were processed for protein analysis, mitochondrial DNA/nuclear DNA ratio (mtDNA:nucDNA ratio), mtDNA damage, mRNA, and polysome profiling. Mitophagy in the post-CPB samples was evidenced by decreased levels of mitophagy adapters NDP52 and optineurin in whole tissue lysate, decreased Opa1 long form, and translocation of Parkin to the mitochondrial fraction. PCR analysis of mtDNA comparing amplification of short vs. long segments of mtDNA revealed increased damage following cardiac surgery. Surprisingly, a marked increase in several mitochondria-specific protein markers and mtDNA:nucDNA ratio was observed, consistent with increased mitochondrial biogenesis. mRNA analysis suggested that mitochondrial biogenesis was traniscription independent and likely driven by increased translation of existing mRNAs. These findings demonstrate in humans that both mitophagy and mitochondrial biogenesis occur during cardiac surgery involving CPB. We suggest that mitophagy is balanced by mitochondrial biogenesis during I/R stress experienced during surgery. Mitigating mtDNA damage and elucidating mechanisms regulating mitochondrial turnover will lead to interventions to improve outcome after I/R in the setting of heart disease.


Asunto(s)
Apéndice Atrial/metabolismo , Procedimientos Quirúrgicos Cardíacos , Puente Cardiopulmonar , ADN Mitocondrial/metabolismo , Mitofagia , Daño por Reperfusión Miocárdica/metabolismo , Biogénesis de Organelos , ARN Mensajero/metabolismo , Anciano , Proteínas de Ciclo Celular , Puente de Arteria Coronaria , ADN/metabolismo , Daño del ADN , Femenino , GTP Fosfohidrolasas/metabolismo , Implantación de Prótesis de Válvulas Cardíacas , Humanos , Masculino , Proteínas de Transporte de Membrana , Persona de Mediana Edad , Proteínas Nucleares/metabolismo , Polirribosomas , Factor de Transcripción TFIIIA/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Cardiovasc Diabetol ; 15: 53, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27036979

RESUMEN

OBJECTIVE: Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease. APPROACH AND RESULTS: We assessed non-invasive vascular function and mitochondrial DNA damage in 275 patients (age 57 ± 9 years, 60 % women) with atherosclerotic cardiovascular disease alone (N = 55), diabetes mellitus alone (N = 74), combined atherosclerotic cardiovascular disease and diabetes mellitus (N = 48), and controls age >45 without diabetes mellitus or atherosclerotic cardiovascular disease (N = 98). Mitochondrial DNA damage measured by quantitative PCR in peripheral blood mononuclear cells was higher with clinical atherosclerosis alone (0.55 ± 0.65), diabetes mellitus alone (0.65 ± 1.0), and combined clinical atherosclerosis and diabetes mellitus (0.89 ± 1.32) as compared to control subjects (0.23 ± 0.64, P < 0.0001). In multivariable models adjusting for age, sex, and relevant cardiovascular risk factors, clinical atherosclerosis and diabetes mellitus remained associated with higher mitochondrial DNA damage levels (ß = 0.14 ± 0.13, P = 0.04 and ß = 0.21 ± 0.13, P = 0.002, respectively). Higher mitochondrial DNA damage was associated with higher baseline pulse amplitude, a measure of arterial pulsatility, but not with flow-mediated dilation or hyperemic response, measures of vasodilator function. CONCLUSIONS: We found greater mitochondrial DNA damage in patients with diabetes mellitus and clinical atherosclerosis. The association of mitochondrial DNA damage and baseline pulse amplitude may suggest a link between mitochondrial dysfunction and excessive small artery pulsatility with potentially adverse microvascular impact.


Asunto(s)
Aterosclerosis/genética , ADN Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Leucocitos Mononucleares/metabolismo , Adulto , Anciano , Aterosclerosis/complicaciones , Aterosclerosis/metabolismo , Velocidad del Flujo Sanguíneo/genética , Arteria Braquial/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Femenino , Humanos , Hiperemia/genética , Masculino , Persona de Mediana Edad , Estrés Oxidativo/genética , Factores de Riesgo
4.
Circ Cardiovasc Genet ; 9(1): 26-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26787433

RESUMEN

BACKGROUND: We hypothesized that endothelial cells having distinct mitochondrial genetic backgrounds would show variation in mitochondrial function and oxidative stress markers concordant with known differential cardiovascular disease susceptibilities. To test this hypothesis, mitochondrial bioenergetics were determined in endothelial cells from healthy individuals with African versus European maternal ancestries. METHODS AND RESULTS: Bioenergetics and mitochondrial DNA (mtDNA) damage were assessed in single-donor human umbilical vein endothelial cells belonging to mtDNA haplogroups H and L, representing West Eurasian and African maternal ancestries, respectively. Human umbilical vein endothelial cells from haplogroup L used less oxygen for ATP production and had increased levels of mtDNA damage compared with those in haplogroup H. Differences in bioenergetic capacity were also observed in that human umbilical vein endothelial cells belonging to haplogroup L had decreased maximal bioenergetic capacities compared with haplogroup H. Analysis of peripheral blood mononuclear cells from age-matched healthy controls with West Eurasian or African maternal ancestries showed that haplogroups sharing an A to G mtDNA mutation at nucleotide pair 10398 had increased mtDNA damage compared with those lacking this mutation. Further study of angiographically proven patients with coronary artery disease and age-matched healthy controls revealed that mtDNA damage was associated with vascular function and remodeling and that age of disease onset was later in individuals from haplogroups lacking the A to G mutation at nucleotide pair 10398. CONCLUSIONS: Differences in mitochondrial bioenergetics and mtDNA damage associated with maternal ancestry may contribute to endothelial dysfunction and vascular disease.


Asunto(s)
Población Negra/genética , Daño del ADN , ADN Mitocondrial , Metabolismo Energético/genética , Haplotipos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Población Blanca/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Humanos , Masculino , Mutación , Estrés Oxidativo/genética
5.
Cancer Res ; 75(20): 4429-36, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26471915

RESUMEN

Current paradigms of carcinogenic risk suggest that genetic, hormonal, and environmental factors influence an individual's predilection for developing metastatic breast cancer. Investigations of tumor latency and metastasis in mice have illustrated differences between inbred strains, but the possibility that mitochondrial genetic inheritance may contribute to such differences in vivo has not been directly tested. In this study, we tested this hypothesis in mitochondrial-nuclear exchange mice we generated, where cohorts shared identical nuclear backgrounds but different mtDNA genomes on the background of the PyMT transgenic mouse model of spontaneous mammary carcinoma. In this setting, we found that primary tumor latency and metastasis segregated with mtDNA, suggesting that mtDNA influences disease progression to a far greater extent than previously appreciated. Our findings prompt further investigation into metabolic differences controlled by mitochondrial process as a basis for understanding tumor development and metastasis in individual subjects. Importantly, differences in mitochondrial DNA are sufficient to fundamentally alter disease course in the PyMT mouse mammary tumor model, suggesting that functional metabolic differences direct early tumor growth and metastatic efficiency.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Transformación Celular Neoplásica/genética , Mitocondrias/genética , Animales , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/metabolismo , ADN Mitocondrial , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Femenino , Humanos , Masculino , Neoplasias Mamarias Experimentales , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Metástasis de la Neoplasia , Estrés Oxidativo/genética , Consumo de Oxígeno , Carga Tumoral
6.
Biochem J ; 467(3): 517-27, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25742174

RESUMEN

The apoA-I (apolipoprotein A-I) mimetic peptide 4F favours the differentiation of human monocytes to an alternatively activated M2 phenotype. The goal of the present study was to test whether the 4F-mediated differentiation of MDMs (monocyte-derived macrophages) requires the induction of an oxidative metabolic programme. 4F treatment induced several genes in MDMs that play an important role in lipid metabolism, including PPARγ (peroxisome-proliferator-activated receptor γ) and CD36. Addition of 4F was associated with a significant increase in FA (fatty acid) uptake and oxidation compared with vehicle treatment. Mitochondrial respiration was assessed by measurement of the OCR (oxygen-consumption rate). 4F increased basal and ATP-linked OCR as well as maximal uncoupled mitochondrial respiration. These changes were associated with a significant increase in ΔΨm (mitochondrial membrane potential). The increase in metabolic activity in 4F-treated MDMs was attenuated by etomoxir, an inhibitor of mitochondrial FA uptake. Finally, addition of the PPARγ antagonist T0070907 to 4F-treated MDMs reduced the expression of CD163 and CD36, cell-surface markers for M2 macrophages, and reduced basal and ATP-linked OCR. These results support our hypothesis that the 4F-mediated differentiation of MDMs to an anti-inflammatory phenotype is due, in part, to an increase in FA uptake and mitochondrial oxidative metabolism.


Asunto(s)
Apolipoproteína A-I/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Péptidos/farmacología , Antiinflamatorios/farmacología , Benzamidas/farmacología , Materiales Biomiméticos/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Metabolismo Energético , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Macrófagos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Consumo de Oxígeno , PPAR gamma/antagonistas & inhibidores , Piridinas/farmacología
7.
Redox Biol ; 2: 1003-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25460736

RESUMEN

Cardiovascular disease (CVD) is the leading cause of death worldwide and it exhibits a greatly increasing incidence proportional to aging. Atherosclerosis is a chronic condition of arterial hardening resulting in restriction of oxygen delivery and blood flow to the heart. Relationships between mitochondrial DNA damage, oxidant production, and early atherogenesis have been recently established and it is likely that aspects of atherosclerotic risk are metabolic in nature. Here we present a novel method through which mitochondrial bioenergetics can be assessed from whole aorta tissue. This method does not require mitochondrial isolation or cell culture and it allows for multiple technical replicates and expedient measurement. This procedure facilitates quantitative bioenergetic analysis and can provide great utility in better understanding the link between mitochondria, metabolism, and atherogenesis.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Animales , Aorta/patología , Aterosclerosis/patología , ADN Mitocondrial/metabolismo , Masculino , Ratones , Ratones Noqueados , Mitocondrias/patología , Técnicas de Cultivo de Órganos/métodos
8.
Redox Biol ; 2: 656-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24936439

RESUMEN

Obesity is a primary risk factor for numerous metabolic diseases including metabolic syndrome, type II diabetes (T2DM), cardiovascular disease and cancer. Although classically viewed as a storage organ, the field of white adipose tissue biology is expanding to include the consideration of the tissue as an endocrine organ and major contributor to overall metabolism. Given its role in energy production, the mitochondrion has long been a focus of study in metabolic dysfunction and a link between the organelle and white adipose tissue function is likely. Herein, we present a novel method for assessing mitochondrial bioenergetics from whole white adipose tissue. This method requires minimal manipulation of tissue, and eliminates the need for cell isolation and culture. Additionally, this method overcomes some of the limitations to working with transformed and/or isolated primary cells and allows for results to be obtained more expediently. In addition to the novel method, we present a comprehensive statistical analysis of bioenergetic data as well as guidelines for outlier analysis.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Mitocondrias/metabolismo , Animales , Antibacterianos/farmacología , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Metabolismo Energético/efectos de los fármacos , Masculino , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Ratones Endogámicos C57BL , Rotenona/farmacología
9.
Biochem J ; 455(2): 157-67, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23924350

RESUMEN

Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.


Asunto(s)
Volumen Cardíaco/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Animales , Daño del ADN , ADN Mitocondrial/metabolismo , Metabolismo Energético , Predisposición Genética a la Enfermedad , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo
10.
PLoS One ; 8(6): e66835, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825571

RESUMEN

Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3) total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1-19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/genética , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Efectos Tardíos de la Exposición Prenatal/genética , Contaminación por Humo de Tabaco/efectos adversos , Animales , Femenino , Predisposición Genética a la Enfermedad/genética , Masculino , Ratones , Embarazo
11.
Cardiovasc Toxicol ; 10(3): 216-26, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20668962

RESUMEN

Epidemiological studies suggest that events occurring during fetal and early childhood development influence disease susceptibility. Similarly, molecular studies in mice have shown that in utero exposure to cardiovascular disease (CVD) risk factors such as environmental tobacco smoke (ETS) increased adult atherogenic susceptibility and mitochondrial damage; however, the molecular effects of similar exposures in primates are not yet known. To determine whether perinatal ETS exposure increased mitochondrial damage, dysfunction and oxidant stress in primates, archived tissues from the non-human primate model Macaca mulatta (M. mulatta) were utilized. M. mulatta were exposed to low levels of ETS (1 mg/m(3) total suspended particulates) from gestation (day 40) to early childhood (1 year), and aortic tissues were assessed for oxidized proteins (protein carbonyls), antioxidant activity (SOD), mitochondrial function (cytochrome oxidase), and mitochondrial damage (mitochondrial DNA damage). Results revealed that perinatal ETS exposure resulted in significantly increased oxidative stress, mitochondrial dysfunction and damage which were accompanied by significantly decreased mitochondrial antioxidant capacity and mitochondrial copy number in vascular tissue. Increased mitochondrial damage was also detected in buffy coat tissues in exposed M. mulatta. These studies suggest that perinatal tobacco smoke exposure increases vascular oxidative stress and mitochondrial damage in primates, potentially increasing adult disease susceptibility.


Asunto(s)
Vasos Sanguíneos/efectos de los fármacos , Mitocondrias Musculares/efectos de los fármacos , Estrés Oxidativo/fisiología , Efectos Tardíos de la Exposición Prenatal , Contaminación por Humo de Tabaco/efectos adversos , Animales , Western Blotting , ADN/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Macaca mulatta , Mitocondrias Musculares/ultraestructura , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 297(2): L209-16, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19395667

RESUMEN

More than 100 million people in the United States live in areas that exceed current ozone air quality standards. In addition to its known pulmonary effects, environmental ozone exposures have been associated with increased hospital admissions related to cardiovascular events, but to date, no studies have elucidated the potential molecular mechanisms that may account for exposure-related vascular impacts. Because of the known pulmonary redox and immune biology stemming from ozone exposure, we hypothesized that ozone inhalation would initiate oxidant stress, mitochondrial damage, and dysfunction within the vasculature. Accordingly, these factors were quantified in mice consequent to a cyclic, intermittent pattern of ozone or filtered air control exposure. Ozone significantly modulated vascular tone regulation and increased oxidant stress and mitochondrial DNA damage (mtDNA), which was accompanied by significantly decreased vascular endothelial nitric oxide synthase protein and indices of nitric oxide production. To examine influences on atherosclerotic lesion formation, apoE-/- mice were exposed as above, and aortic plaques were quantified. Exposure resulted in significantly increased atherogenesis compared with filtered air controls. Vascular mitochondrial damage was additionally quantified in ozone- and filtered air-exposed infant macaque monkeys. These studies revealed that ozone increased vascular mtDNA damage in nonhuman primates in a fashion consistent with known atherosclerotic lesion susceptibility in humans. Consequently, inhaled ozone, in the absence of other environmental toxicants, promotes increased vascular dysfunction, oxidative stress, mitochondrial damage, and atherogenesis.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Aterosclerosis/etiología , Enfermedades Mitocondriales/etiología , Ozono/efectos adversos , Animales , Aorta/metabolismo , Aterosclerosis/metabolismo , Presión Sanguínea/fisiología , Daño del ADN/fisiología , ADN Mitocondrial/genética , Frecuencia Cardíaca/fisiología , Enfermedades Pulmonares/etiología , Enfermedades Pulmonares/metabolismo , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Enfermedades Mitocondriales/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitritos/metabolismo , Oxidantes/efectos adversos , Estrés Oxidativo/fisiología , Superóxido Dismutasa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA