Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Curr Opin Biotechnol ; 81: 102949, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172422

RESUMEN

Decarboxylation - the release of carbon dioxide (CO2) from a substrate - reduces the carbon yield of bioproduced chemicals. When overlaid onto central carbon metabolism, carbon-conservation networks (CCNs) that reroute flux around CO2 release can theoretically achieve higher carbon yields for products derived from intermediates that traditionally require CO2 release, such as acetyl-CoA. Recently, CCNs have started to be implemented in model organisms to produce compounds at higher carbon yields. However, implementation of CCNs in nonmodel hosts may have the greatest impact given their ability to assimilate a larger array of feedstocks, greater environmental tolerance, and unique biosynthetic pathways, ultimately enabling access to a wider range of products. Here, we review recent advances in CCNs with a focus on their application to nonmodel organisms. The differences in central carbon metabolism among different nonmodel hosts reveal opportunities to engineer and apply new CCNs.


Asunto(s)
Dióxido de Carbono , Dióxido de Carbono/metabolismo , Acetilcoenzima A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...