Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Mov Disord ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616406

RESUMEN

BACKGROUND: X-Linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by rapidly progressive dystonia and parkinsonism. Mosaic Divergent Repeat Interruptions affecting motif Length and Sequence (mDRILS) were recently found within the TAF1 SVA repeat tract and were shown to associate with repeat stability and age at onset in XDP, specifically the AGGG [5'-SINE-VNTR-Alu(AGAGGG)2AGGG(AGAGGG)n] mDRILS. OBJECTIVE: This study aimed to investigate the stability of mDRILS frequencies and stability of (AGAGGG)n repeat length during transmission in parent-offspring pairs. METHODS: Fifty-six families (n = 130) were investigated for generational transmission of repeat length and mDRILS. The mDRILS stability of 16 individuals was assessed at two sampling points 1 year apart. DNA was sequenced with long-read technologies after long-range polymerase chain reaction amplification of the TAF1 SVA. Repeat number and mDRILS were detected with Noise-Cancelling Repeat Finder (NCRF). RESULTS: When comparing the repeat domain, 51 of 65 children had either contractions or expansions of the repeat length. The AGGG frequency remained stable across generations at 0.074 (IQR: 0.069-0.078) (z = -0.526; P = 0.599). However, the median AGGG frequency in children with an expansion (0.072 [IQR: 0.066-0.076]) was lower compared with children with retention or contraction (0.080 [IQR: 0.073-0.083]) (z = -0.007; P = 0.003). In a logistic regression model, the AGGG frequency predicted the outcome of either expansion or retention/contraction when including repeat number and sex as covariates (ß = 80.7; z-score = 2.63; P = 0.0085). The AGGG frequency varied slightly over 1 year (0.070 [IQR: 0.063-0.080] to 0.073 [IQR: 0.069-0.078]). CONCLUSIONS: Our results show that a higher AGGG frequency may stabilize repeats across generations. This highlights the importance of further investigating mDRILS as a disease-modifying factor with generational differences. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Mov Disord ; 39(5): 887-892, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38469933

RESUMEN

BACKGROUND: Biallelic pathogenic variants in the ANO10 gene cause autosomal recessive progressive ataxia (ATX-ANO10). METHODS: Following the MDSGene protocol, we systematically investigated genotype-phenotype relationships in ATX-ANO10 based on the clinical and genetic data from 82 published and 12 newly identified patients. RESULTS: Most patients (>80%) had loss-of-function (LOF) variants. The most common variant was c.1150_1151del, found in all 29 patients of Romani ancestry, who had a 14-year earlier mean age at onset than patients homozygous for other LOF variants. We identified previously undescribed clinical features of ATX-ANO10 (e.g., facial muscle involvement and strabismus) suggesting the involvement of brainstem pathology, and we propose a diagnostic algorithm that may aid clinical ATX-ANO10 diagnosis. CONCLUSIONS: The early disease onset in patients with c.1150_1151del may indicate the existence of genetic/environmental disease-modifying factors in the Romani population. Our findings will inform patient counseling and may improve our understanding of the disease mechanism. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Anoctaminas , Ataxias Espinocerebelosas , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Edad de Inicio , Anoctaminas/genética , Estudios de Asociación Genética , Ataxias Espinocerebelosas/genética , Anciano
3.
Artículo en Inglés | MEDLINE | ID: mdl-38487929

RESUMEN

BACKGROUND: The newly discovered intronic repeat expansions in the genes encoding replication factor C subunit 1 (RFC1) and fibroblast growth factor 14 (FGF14) frequently cause late-onset cerebellar ataxia. OBJECTIVES: To investigate the presence of RFC1 and FGF14 pathogenic repeat expansions in Serbian patients with adult-onset cerebellar ataxia. METHODS: The study included 167 unrelated patients with sporadic or familial cerebellar ataxia. The RFC1 repeat expansion analysis was performed by duplex PCR and Sanger sequencing, while the FGF14 repeat expansion was tested for by long-range PCR, repeat-primed PCR, and Sanger sequencing. RESULTS: We identified pathogenic repeat expansions in RFC1 in seven patients (7/167; 4.2%) with late-onset sporadic ataxia with neuropathy and chronic cough. Two patients also had bilateral vestibulopathy. Repeat expansions in FGF14 were found in nine unrelated patients (9/167; 5.4%) with ataxia, less than half of whom presented with neuropathy and two-thirds with global brain atrophy. Tremor and episodic features were the most frequent additional characteristics in carriers of uninterrupted FGF14 repeat expansions. Among the 122 sporadic cases, 12 (9.8%) carried an expansion in either RFC1 or FGF14, comparable to 4/45 (8.9%) among the patients with a positive family history. CONCLUSIONS: Pathogenic repeat expansions in RFC1 and FGF14 are relatively frequent causes of adult-onset cerebellar ataxia, especially among sporadic patients, indicating that family history should not be considered when prioritizing ataxia patients for testing of RFC1 or FGF14 repeat expansions.

4.
Cerebellum ; 23(2): 479-488, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37085601

RESUMEN

Different pathogenic variants in the DNA polymerase-gamma2 (POLG2) gene cause a rare, clinically heterogeneous mitochondrial disease. We detected a novel POLG2 variant (c.1270 T > C, p.Ser424Pro) in a family with adult-onset cerebellar ataxia and progressive ophthalmoplegia. We demonstrated altered mitochondrial integrity in patients' fibroblast cultures but no changes of the mitochondrial DNA were found when compared to controls. We consider this novel, segregating POLG2 variant as disease-causing in this family. Moreover, we systematically screened the literature for POLG2-linked phenotypes and re-evaluated all mutations published to date for pathogenicity according to current knowledge. Thereby, we identified twelve published, likely disease-causing variants in 19 patients only. The core features included progressive ophthalmoplegia and cerebellar ataxia; parkinsonism, neuropathy, cognitive decline, and seizures were also repeatedly found in adult-onset heterozygous POLG2-related disease. A severe phenotype relates to biallelic pathogenic variants in POLG2, i.e., newborn-onset liver failure, referred to as mitochondrial depletion syndrome. Our work underlines the broad clinical spectrum of POLG2-related disease and highlights the importance of functional characterization of variants of uncertain significance to enable meaningful genetic counseling.


Asunto(s)
Ataxia Cerebelosa , Enfermedades Mitocondriales , Oftalmoplejía , Adulto , Recién Nacido , Humanos , Enfermedades Mitocondriales/genética , ADN Mitocondrial/genética , Mutación/genética
5.
Nat Commun ; 14(1): 8368, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114471

RESUMEN

NEMO is a ubiquitin-binding protein which regulates canonical NF-κB pathway activation in innate immune signaling, cell death regulation and host-pathogen interactions. Here we identify an NF-κB-independent function of NEMO in proteostasis regulation by promoting autophagosomal clearance of protein aggregates. NEMO-deficient cells accumulate misfolded proteins upon proteotoxic stress and are vulnerable to proteostasis challenges. Moreover, a patient with a mutation in the NEMO-encoding IKBKG gene resulting in defective binding of NEMO to linear ubiquitin chains, developed a widespread mixed brain proteinopathy, including α-synuclein, tau and TDP-43 pathology. NEMO amplifies linear ubiquitylation at α-synuclein aggregates and promotes the local concentration of p62 into foci. In vitro, NEMO lowers the threshold concentrations required for ubiquitin-dependent phase transition of p62. In summary, NEMO reshapes the aggregate surface for efficient autophagosomal clearance by providing a mobile phase at the aggregate interphase favoring co-condensation with p62.


Asunto(s)
Quinasa I-kappa B , FN-kappa B , Humanos , FN-kappa B/metabolismo , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , alfa-Sinucleína/genética , Ubiquitina/metabolismo , Autofagia/genética
6.
Eur J Neurol ; 30(10): 3377-3393, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37422902

RESUMEN

BACKGROUND: Most episodic ataxias (EA) are autosomal dominantly inherited and characterized by recurrent attacks of ataxia and other paroxysmal and non-paroxysmal features. EA is often caused by pathogenic variants in the CACNA1A, KCNA1, PDHA1, and SLC1A3 genes, listed as paroxysmal movement disorders (PxMD) by the MDS Task Force on the Nomenclature of Genetic Movement Disorders. Little is known about the genotype-phenotype correlation of the different genetic EA forms. METHODS: We performed a systematic review of the literature to identify individuals affected by an episodic movement disorder harboring pathogenic variants in one of the four genes. We applied the standardized MDSGene literature search and data extraction protocol to summarize the clinical and genetic features. All data are available via the MDSGene protocol and platform on the MDSGene website (https://www.mdsgene.org/). RESULTS: Information on 717 patients (CACNA1A: 491, KCNA1: 125, PDHA1: 90, and SLC1A3: 11) carrying 287 different pathogenic variants from 229 papers was identified and summarized. We show the profound phenotypic variability and overlap leading to the absence of frank genotype-phenotype correlation aside from a few key 'red flags'. CONCLUSION: Given this overlap, a broad approach to genetic testing using a panel or whole exome or genome approach is most practical in most circumstances.


Asunto(s)
Ataxia , Trastornos del Movimiento , Humanos , Ataxia/genética , Genotipo , Fenotipo
7.
Ann Neurol ; 94(4): 684-695, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37376770

RESUMEN

OBJECTIVE: The purpose of this study was to characterize a metabolic brain network associated with X-linked dystonia-parkinsonism (XDP). METHODS: Thirty right-handed Filipino men with XDP (age = 44.4 ± 8.5 years) and 30 XDP-causing mutation negative healthy men from the same population (age = 37.4 ± 10.5 years) underwent [18 F]-fluorodeoxyglucose positron emission tomography. Scans were analyzed using spatial covariance mapping to identify a significant XDP-related metabolic pattern (XDPRP). Patients were rated clinically at the time of imaging according to the XDP-Movement Disorder Society of the Philippines (MDSP) scale. RESULTS: We identified a significant XDPRP topography from 15 randomly selected subjects with XDP and 15 control subjects. This pattern was characterized by bilateral metabolic reductions in caudate/putamen, frontal operculum, and cingulate cortex, with relative increases in the bilateral somatosensory cortex and cerebellar vermis. Age-corrected expression of XDPRP was significantly elevated (p < 0.0001) in XDP compared to controls in the derivation set and in the remaining 15 patients (testing set). We validated the XDPRP topography by identifying a similar pattern in the original testing set (r = 0.90, p < 0.0001; voxel-wise correlation between both patterns). Significant correlations between XDPRP expression and clinical ratings for parkinsonism-but not dystonia-were observed in both XDP groups. Further network analysis revealed abnormalities of information transfer through the XDPRP space, with loss of normal connectivity and gain of abnormal functional connections linking network nodes with outside brain regions. INTERPRETATION: XDP is associated with a characteristic metabolic network associated with abnormal functional connectivity among the basal ganglia, thalamus, motor regions, and cerebellum. Clinical signs may relate to faulty information transfer through the network to outside brain regions. ANN NEUROL 2023;94:684-695.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Genéticas Ligadas al Cromosoma X , Masculino , Humanos , Adulto , Persona de Mediana Edad , Trastornos Distónicos/diagnóstico por imagen , Trastornos Distónicos/genética , Trastornos Distónicos/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico por imagen , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Distonía/diagnóstico por imagen , Distonía/genética , Biomarcadores
8.
J Neurol ; 270(9): 4262-4275, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37191726

RESUMEN

BACKGROUND: X-Linked dystonia-parkinsonism (XDP) is a movement disorder characterized by the presence of both dystonia and parkinsonism with one or the other more prominent in the initial stages and later on manifesting with more parkinsonian features towards the latter part of the disease. XDP patients show oculomotor abnormalities indicating prefrontal and striatal impairment. This study investigated oculomotor behavior in non-manifesting mutation carriers (NMC). We hypothesized that oculomotor disorders occur before the appearance of dystonic or parkinsonian signs. This could help to functionally identify brain regions already affected in the prodromal stage of the disease. METHODS: Twenty XDP patients, 13 NMC, and 28 healthy controls (HC) performed different oculomotor tasks typically affected in patients with parkinsonian signs. RESULTS: The error rate for two types of volitional saccades, i.e., anti-saccades and memory-guided saccades, was increased not only in XDP patients but also in NMC compared to HC. However, the increase in error rates of both saccade types were highly correlated in XDP patients only. Hypometria of reflexive saccades was only found in XDP patients. Initial acceleration and maintenance velocity of smooth pursuit eye movements were only impaired in XDP patients. CONCLUSIONS: Despite being asymptomatic, NMC already showed some oculomotor deficits reflecting fronto-striatal impairments, typically found in XDP patients. However, NMC did not show saccade hypometria and impaired smooth pursuit as seen in advanced Parkinson's disease and XDP, suggesting oculomotor state rather than trait signs in these mutation carriers. Neurodegeneration may commence in the striatum and prefrontal cortex, specifically the dorsolateral prefrontal cortex.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedades Genéticas Ligadas al Cromosoma X , Trastornos de la Motilidad Ocular , Humanos , Trastornos Distónicos/complicaciones , Trastornos Distónicos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Distonía/genética , Encéfalo , Trastornos de la Motilidad Ocular/etiología
11.
Mov Disord Clin Pract ; 10(2): 316-322, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36825045

RESUMEN

Background: POLR3A pathogenic variants are associated with hypomyelination, hypodontia, hypogonadism, and movement disorders. Cases: We describe the range of movement disorders seen in six patients (four female, two male) with POLR3A variants [three novel (c.2214del, c.3775G>A, c.3905G>T) and six previously reported (c.760C>T, c.1771-7C>G, c.1909+22G>A, c.2005C>T, c.2422C>T, c.3337-11T>C)]. Patient 1 presented with a neonatal progeroid syndrome and developed parkinsonism, dystonia, ataxia, and spasticity. Patient 2 presented with infant-onset rapidly progressive chorea, and dystonia. Three patients (patients 3, 5, 6) presented predominantly with ataxia in combination with spasticity and dystonia. Patient 4 developed segmental dystonia during adolescence and ataxia in early adulthood. Four patients had vertical gaze impairment. The most common brain MRI abnormality was T2-weighted/FLAIR hyperintensity of the superior cerebellar peduncles and midbrain. Conclusion: POLR3A-related disorders exhibit significant phenotypic pleomorphism. Vertical gaze dysfunction and T2-weighted/FLAIR hyperintensity of the superior cerebellar peduncles and midbrain may be useful signs suggestive of this condition.

12.
Ann Neurol ; 93(5): 999-1011, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36646669

RESUMEN

In neurodegenerative diseases, the characterization of the prodromal phase is essential for the future application of disease-modifying therapies. X-linked dystonia-parkinsonism is a hereditary neurodegenerative movement disorder characterized by severe adult-onset dystonia accompanied by parkinsonism. Distinct striatal and pallidal atrophy is present already in early disease stages indicating a long-lasting presymptomatic degenerative process. To gain insight into the prodromal phase of X-linked dystonia-parkinsonism, structural and iron-sensitive magnetic resonance imaging (MRI) was performed in 10 non-manifesting carriers and 24 healthy controls in a double-blind fashion. Seventeen patients with X-linked dystonia-parkinsonism were recruited to replicate previous findings of basal ganglia pathology and iron accumulation. Age at onset was estimated in non-manifesting carriers and patients using the repeat length of the hexanucleotide expansion and 3 single-nucleotide polymorphisms associated with age at onset. Voxel-based morphometry and subcortical volumetry showed striatal and pallidal atrophy in non-manifesting carriers (~10%) and patients (~40%). Substantia nigra volume was similarly reduced in patients (~40%). Caudate volume correlated with time to estimated onset in non-manifesting carriers. Susceptibility-weighted imaging confirmed iron deposition in the anteromedial putamen in patients. Non-manifesting carriers also showed small clusters of iron accumulation in the same area after lowering the statistical threshold. In conclusion, basal ganglia atrophy and iron accumulation precede the clinical onset of X-linked dystonia-parkinsonism and can be detected years before the estimated disease manifestation. It thereby highlights the potential of multimodal imaging to identify clinically unaffected mutation carriers with incipient neurodegeneration and to monitor disease progression independent of clinical measures. Longitudinal studies are needed to further elucidate the onset and progression rate of neurodegeneration in prodromal X-linked dystonia-parkinsonism. ANN NEUROL 2023;93:999-1011.


Asunto(s)
Trastornos Distónicos , Enfermedades Neurodegenerativas , Adulto , Humanos , Trastornos Distónicos/diagnóstico por imagen , Trastornos Distónicos/genética , Trastornos Distónicos/complicaciones , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/patología , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/patología , Atrofia/patología , Hierro
14.
Brain ; 146(3): 1075-1082, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35481544

RESUMEN

While many genetic causes of movement disorders have been identified, modifiers of disease expression are largely unknown. X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease caused by a SINE-VNTR-Alu(AGAGGG)n retrotransposon insertion in TAF1, with a polymorphic (AGAGGG)n repeat. Repeat length and variants in MSH3 and PMS2 explain ∼65% of the variance in age at onset (AAO) in XDP. However, additional genetic modifiers are conceivably at play in XDP, such as repeat interruptions. Long-read nanopore sequencing of PCR amplicons from XDP patients (n = 202) was performed to assess potential repeat interruption and instability. Repeat-primed PCR and Cas9-mediated targeted enrichment confirmed the presence of identified divergent repeat motifs. In addition to the canonical pure SINE-VNTR-Alu-5'-(AGAGGG)n, we observed a mosaic of divergent repeat motifs that polarized at the beginning of the tract, where the divergent repeat interruptions varied in motif length by having one, two, or three nucleotides fewer than the hexameric motif, distinct from interruptions in other disease-associated repeats, which match the lengths of the canonical motifs. All divergent configurations occurred mosaically and in two investigated brain regions (basal ganglia, cerebellum) and in blood-derived DNA from the same patient. The most common divergent interruption was AGG [5'-SINE-VNTR-Alu(AGAGGG)2AGG(AGAGGG)n], similar to the pure tract, followed by AGGG [5'-SINE-VNTR-Alu(AGAGGG)2AGGG(AGAGGG)n], at median frequencies of 0.425 (IQR: 0.42-0.43) and 0.128 (IQR: 0.12-0.13), respectively. The mosaic AGG motif was not associated with repeat number (estimate = -3.8342, P = 0.869). The mosaic pure tract frequency was associated with repeat number (estimate = 45.32, P = 0.0441) but not AAO (estimate = -41.486, P = 0.378). Importantly, the mosaic frequency of the AGGG negatively correlated with repeat number after adjusting for age at sampling (estimate = -161.09, P = 3.44 × 10-5). When including the XDP-relevant MSH3/PMS2 modifier single nucleotide polymorphisms into the model, the mosaic AGGG frequency was associated with AAO (estimate = 155.1063, P = 0.047); however, the association dissipated after including the repeat number (estimate = -92.46430, P = 0.079). We reveal novel mosaic divergent repeat interruptions affecting both motif length and sequence (DRILS) of the canonical motif polarized within the SINE-VNTR-Alu(AGAGGG)n repeat. Our study illustrates: (i) the importance of somatic mosaic genotypes; (ii) the biological plausibility of multiple modifiers (both germline and somatic) that can have additive effects on repeat instability; and (iii) that these variations may remain undetected without assessment of single molecules.


Asunto(s)
Trastornos Distónicos , Enfermedades Genéticas Ligadas al Cromosoma X , Enfermedades Neurodegenerativas , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Trastornos Distónicos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética
15.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076926

RESUMEN

Beta-propeller protein-associated neurodegeneration (BPAN) is a subtype of neurodegeneration with brain iron accumulation (NBIA) caused by loss-of-function variants in WDR45. The underlying mechanism of iron accumulation in WDR45 deficiency remains elusive. We established a primary skin fibroblast culture of a new BPAN patient with a missense variant p.(Asn61Lys) in WDR45 (NM_007075.3: c.183C>A). The female patient has generalized dystonia, anarthria, parkinsonism, spasticity, stereotypies, and a distinctive cranial MRI with generalized brain atrophy, predominantly of the cerebellum. For the functional characterization of this variant and to provide a molecular link of WDR45 and iron accumulation, we looked for disease- and variant-related changes in the patient's fibroblasts by qPCR, immunoblotting and immunofluorescence comparing to three controls and a previously reported WDR45 patient. We demonstrated molecular changes in mutant cells comprising an impaired mitochondrial network, decreased levels of lysosomal proteins and enzymes, and altered autophagy, confirming the pathogenicity of the variant. Compared to increased levels of the ferritinophagy marker Nuclear Coactivator 4 (NCOA4) in control cells upon iron treatment, patients' cells revealed unchanged NCOA4 protein levels, indicating disturbed ferritinophagy. Additionally, we observed abnormal protein levels of markers of the iron-dependent cell death ferroptosis in patients' cells. Altogether, our data suggests that WDR45 deficiency affects ferritinophagy and ferroptosis, consequentially disturbing iron recycling.


Asunto(s)
Proteínas Portadoras , Ferroptosis , Enfermedades Neurodegenerativas , Autofagia/genética , Encéfalo/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Ferroptosis/genética , Humanos , Hierro/metabolismo , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/genética
16.
Mov Disord ; 37(12): 2427-2439, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36148898

RESUMEN

BACKGROUND: Coding and noncoding repeat expansions are an important cause of neurodegenerative diseases. OBJECTIVE: This study determined the clinical and genetic features of a large German family that has been followed for almost 2 decades with an autosomal dominantly inherited spinocerebellar ataxia (SCA) and independent co-occurrence of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). METHODS: We carried out clinical examinations and telephone interviews, reviewed medical records, and performed magnetic resonance imaging and positron emission tomography scans of all available family members. Comprehensive genetic investigations included linkage analysis, short-read genome sequencing, long-read sequencing, repeat-primed polymerase chain reaction, and Southern blotting. RESULTS: The family comprises 118 members across seven generations, 30 of whom were definitely and five possibly affected. In this family, two different pathogenic mutations were found, a heterozygous repeat expansion in C9ORF72 in four patients with ALS/FTD and a heterozygous repeat expansion in DAB1 in at least nine patients with SCA, leading to a diagnosis of DAB1-related ataxia (ATX-DAB1; SCA37). One patient was affected by ALS and SCA and carried both repeat expansions. The repeat in DAB1 had the same configuration but was larger than those previously described ([ATTTT]≈75 [ATTTC]≈40-100 [ATTTT]≈415 ). Clinical features in patients with SCA included spinocerebellar symptoms, sometimes accompanied by additional ophthalmoplegia, vertical nystagmus, tremor, sensory deficits, and dystonia. After several decades, some of these patients suffered from cognitive decline and one from additional nonprogressive lower motor neuron affection. CONCLUSION: We demonstrate genetic and clinical findings during an 18-year period in a unique family carrying two different pathogenic repeat expansions, providing novel insights into their genotypic and phenotypic spectrums. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxia Cerebelosa , Demencia Frontotemporal , Ataxias Espinocerebelosas , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Ataxia Cerebelosa/genética , Ataxias Espinocerebelosas/genética , Proteínas del Tejido Nervioso/genética , Proteínas Adaptadoras Transductoras de Señales/genética
18.
Mov Disord ; 37(7): 1474-1482, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35491955

RESUMEN

BACKGROUND: Early diagnosis in patients with neurodegenerative disorders is crucial to initiate disease-modifying therapies at a time point where progressive neurodegeneration can still be modified. OBJECTIVES: The objective of this study was to determine whether motor or non-motor signs of the disease occur as indicators of a prodromal phase of X-linked dystonia-parkinsonism (XDP), a highly-penetrant monogenic movement disorder with striking basal ganglia pathology. METHODS: In addition to a comprehensive clinical assessment, sensor-based balance and gait analyses were performed in non-manifesting mutation carriers (NMCs), healthy controls (HCs), and patients with XDP. Gradient-boosted trees (GBT) methodology was utilized to classify groups of interest. RESULTS: There were no clinically overt disease manifestations in the NMCs. Balance analysis, however, revealed a classification accuracy of 90% for the comparison of NMC versus HC. For the gait analysis, the best-performing GBT-based model showed a balanced accuracy of 95% (NMC vs. HC; walking at maximum speed). Using a separate analysis of genetic modifiers, several gait parameters correlated strongly with the estimated age at disease onset in the NMC group. CONCLUSIONS: Our study unraveled balance and gait abnormalities in NMCs that preceded the onset of XDP. These findings demonstrate prodromal motor changes among NMCs who will develop XDP with a very high likelihood in the future. Gait abnormalities had a predictive value for the estimated age at onset highlighting the impact of genetic modifiers in personalized treatment in monogenic neurodegenerative disorders. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos Distónicos , Enfermedades Genéticas Ligadas al Cromosoma X , Ganglios Basales/patología , Trastornos Distónicos/genética , Trastornos Distónicos/patología , Enfermedades Genéticas Ligadas al Cromosoma X/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Fenotipo
19.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216353

RESUMEN

X-linked dystonia-parkinsonism (XDP) is a severe neurodegenerative disorder that manifests as adult-onset dystonia combined with parkinsonism. A SINE-VNTR-Alu (SVA) retrotransposon inserted in an intron of the TAF1 gene reduces its expression and alters splicing in XDP patient-derived cells. As a consequence, increased levels of the TAF1 intron retention transcript TAF1-32i can be found in XDP cells as compared to healthy controls. Here, we investigate the sequence of the deep intronic region included in this transcript and show that it is also present in cells from healthy individuals, albeit in lower amounts than in XDP cells, and that it undergoes degradation by nonsense-mediated mRNA decay. Furthermore, we investigate epigenetic marks (e.g., DNA methylation and histone modifications) present in this intronic region and the spanning sequence. Finally, we show that the SVA evinces regulatory potential, as demonstrated by its ability to repress the TAF1 promoter in vitro. Our results enable a better understanding of the disease mechanisms underlying XDP and transcriptional alterations caused by SVA retrotransposons.


Asunto(s)
Trastornos Distónicos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Trastornos Parkinsonianos/genética , Retroelementos/genética , Transcripción Genética/genética , Adolescente , Adulto , Metilación de ADN/genética , Femenino , Histona Acetiltransferasas/genética , Humanos , Intrones/genética , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Elementos de Nucleótido Esparcido Corto/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Adulto Joven
20.
Genes (Basel) ; 13(1)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35052466

RESUMEN

BACKGROUND: X-linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by progressive dystonia and parkinsonism. It is caused by a SINE-VNTR-Alu (SVA) retrotransposon insertion in the TAF1 gene with a polymorphic (CCCTCT)n domain that acts as a genetic modifier of disease onset and expressivity. METHODS: Herein, we used Nanopore sequencing to investigate SVA genetic variability and methylation. We used blood-derived DNA from 96 XDP patients for amplicon-based deep Nanopore sequencing and validated it with fragment analysis which was performed using fluorescence-based PCR. To detect methylation from blood- and brain-derived DNA, we used a Cas9-targeted approach. RESULTS: High concordance was observed for hexanucleotide repeat numbers detected with Nanopore sequencing and fragment analysis. Within the SVA locus, there was no difference in genetic variability other than variations of the repeat motif between patients. We detected high CpG methylation frequency (MF) of the SVA and flanking regions (mean MF = 0.94, SD = ±0.12). Our preliminary results suggest only subtle differences between the XDP patient and the control in predicted enhancer sites directly flanking the SVA locus. CONCLUSIONS: Nanopore sequencing can reliably detect SVA hexanucleotide repeat numbers, methylation and, lastly, variation in the repeat motif.


Asunto(s)
Metilación de ADN , Trastornos Distónicos/genética , Trastornos Distónicos/patología , Epigénesis Genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Secuenciación de Nanoporos/métodos , Retroelementos , Factores Asociados con la Proteína de Unión a TATA/genética , Adulto , Elementos Alu , Humanos , Masculino , Persona de Mediana Edad , Repeticiones de Minisatélite , Elementos de Nucleótido Esparcido Corto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...