Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38585801

RESUMEN

The canonical microcircuit (CMC) has been hypothesized to be the fundamental unit of information processing in cortex. Each CMC unit is thought to be an interconnected column of neurons with specific connections between excitatory and inhibitory neurons across layers. Recently, we identified a conserved spectrolaminar motif of oscillatory activity across the primate cortex that may be the physiological consequence of the CMC. The spectrolaminar motif consists of local field potential (LFP) gamma-band power (40-150 Hz) peaking in superficial layers 2 and 3 and alpha/beta-band power (8-30 Hz) peaking in deep layers 5 and 6. Here, we investigate whether specific conserved cell types may produce the spectrolaminar motif. We collected laminar histological and electrophysiological data in 11 distinct cortical areas spanning the visual hierarchy: V1, V2, V3, V4, TEO, MT, MST, LIP, 8A/FEF, PMD, and LPFC (area 46), and anatomical data in DP and 7A. We stained representative slices for the three main inhibitory subtypes, Parvalbumin (PV), Calbindin (CB), and Calretinin (CR) positive neurons, as well as pyramidal cells marked with Neurogranin (NRGN). We found a conserved laminar structure of PV, CB, CR, and pyramidal cells. We also found a consistent relationship between the laminar distribution of inhibitory subtypes with power in the local field potential. PV interneuron density positively correlated with gamma (40-150 Hz) power. CR and CB density negatively correlated with alpha (8-12 Hz) and beta (13-30 Hz) oscillations. The conserved, layer-specific pattern of inhibition and excitation across layers is therefore likely the anatomical substrate of the spectrolaminar motif. Significance Statement: Neuronal oscillations emerge as an interplay between excitatory and inhibitory neurons and underlie cognitive functions and conscious states. These oscillations have distinct expression patterns across cortical layers. Does cellular anatomy enable these oscillations to emerge in specific cortical layers? We present a comprehensive analysis of the laminar distribution of the three main inhibitory cell types in primate cortex (Parvalbumin, Calbindin, and Calretinin positive) and excitatory pyramidal cells. We found a canonical relationship between the laminar anatomy and electrophysiology in 11 distinct primate areas spanning from primary visual to prefrontal cortex. The laminar anatomy explained the expression patterns of neuronal oscillations in different frequencies. Our work provides insight into the cortex-wide cellular mechanisms that generate neuronal oscillations in primates.

2.
Annu Rev Vis Sci ; 8: 345-360, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35676095

RESUMEN

Our brains devote substantial resources to creating a singular, coherent view from the two images in our eyes. Both anatomical and functional studies have established that the underlying fusion of monocular signals into a combined binocular response starts within the first synapses downstream from our eyes. Long-standing consensus held that the two eyes' signals remain largely segregated until they are combined by neurons in the upper layers of the primary visual cortex. However, new experimental data challenge this classic model, suggesting that there are pronounced earlier interactions between the two eyes' streams of activation. In this article, we review the literature and detail how these findings can be functionally interpreted in context with previously established psychophysical models of binocular vision.


Asunto(s)
Corteza Visual , Animales , Neuronas/fisiología , Corteza Visual Primaria , Primates , Visión Binocular/fisiología , Corteza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA