Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(747): eadi2952, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748775

RESUMEN

Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.


Asunto(s)
Tolerancia Inmunológica , Interleucina-6 , Células Asesinas Naturales , Células Supresoras de Origen Mieloide , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Interleucina-6/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Animales , Humanos , Transducción de Señal , Microambiente Tumoral/inmunología , Ratones Noqueados , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología
2.
Eur J Immunol ; 54(5): e2350450, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38356202

RESUMEN

The Wiskott-Aldrich syndrome protein (WASp) regulates actin cytoskeletal dynamics and function of hematopoietic cells. Mutations in the WAS gene lead to two different syndromes; Wiskott-Aldrich syndrome (WAS) caused by loss-of-function mutations, and X-linked neutropenia (XLN) caused by gain-of-function mutations. We previously showed that WASp-deficient mice have a decreased number of regulatory T (Treg) cells in the thymus and the periphery. We here evaluated the impact of WASp mutations on Treg cells in the thymus of WAS and XLN mouse models. Using in vitro Treg differentiation assays, WAS CD4 single-positive thymocytes have decreased differentiation to Treg cells, despite normal early signaling upon IL-2 and TGF-ß stimulation. They failed to proliferate and express CD25 at high levels, leading to poor survival and a lower number of Foxp3+ Treg cells. Conversely, XLN CD4 single-positive thymocytes efficiently differentiate into Foxp3+ Treg cells following a high proliferative response to IL-2 and TGF-ß, associated with high CD25 expression when compared with WT cells. Altogether, these results show that specific mutations of WASp affect Treg cell development differently, demonstrating a critical role of WASp activity in supporting Treg cell development and expansion.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Linfocitos T Reguladores , Timo , Proteína del Síndrome de Wiskott-Aldrich , Animales , Linfocitos T Reguladores/inmunología , Diferenciación Celular/inmunología , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Ratones , Timo/inmunología , Timo/citología , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Interleucina-2/metabolismo , Interleucina-2/inmunología , Mutación , Factor de Crecimiento Transformador beta/metabolismo , Síndrome de Wiskott-Aldrich/inmunología , Síndrome de Wiskott-Aldrich/genética , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Subunidad alfa del Receptor de Interleucina-2/genética , Ratones Noqueados , Ratones Endogámicos C57BL
3.
J Exp Clin Cancer Res ; 43(1): 13, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191418

RESUMEN

BACKGROUND: Inflammation in the eye is often associated with aggravated ocular diseases such as uveal melanoma (UM). Poor prognosis of UM is generally associated with high potential of metastatic liver dissemination. A strong driver of metastatic dissemination is the activation of the epithelial-mesenchymal transition (EMT) regulating transcription factor ZEB1, and high expression of ZEB1 is associated with aggressiveness of UM. While ZEB1 expression can be also associated with immune tolerance, the underlying drivers of ZEB1 activation remain unclear. METHODS: Transcriptomic, in vitro, ex vivo, and in vivo analyses were used to investigate the impact on clinical prognosis of immune infiltration in the ocular tumor microenvironment. A metastatic liver dissemination model of was developed to address the role of natural killer (NK) cells in driving the migration of UM. RESULTS: In a pan-cancer TCGA analysis, natural killer (NK) cells were associated with worse overall survival in uveal melanoma and more abundant in high-risk monosomy 3 tumors. Furthermore, uveal melanoma expressed high levels of the tumor necrosis factor superfamily member 4-1BB ligand, particularly in tumors with monosomy 3 and BAP1 mutations. Tumors expressing 4-1BB ligand induced CD73 expression on NK cells accompanied with the ability to promote tumor dissemination. Through ligation of 4-1BB, NK cells induced the expression of the ZEB1 transcription factor, leading to the formation of liver metastasis of uveal melanoma. CONCLUSIONS: Taken together, the present study demonstrates a role of NK cells in the aggravation of uveal melanoma towards metastatic disease.


Asunto(s)
Ligando 4-1BB , Melanoma , Humanos , Melanoma/genética , Transición Epitelial-Mesenquimal , Células Asesinas Naturales , Monosomía , Microambiente Tumoral
4.
Sci Adv ; 9(34): eadg1610, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624890

RESUMEN

The next steps of deep space exploration are manned missions to Moon and Mars. For safe space missions for crew members, it is important to understand the impact of space flight on the immune system. We studied the effects of 21 days dry immersion (DI) exposure on the transcriptomes of T cells isolated from blood samples of eight healthy volunteers. Samples were collected 7 days before DI, at day 7, 14, and 21 during DI, and 7 days after DI. RNA sequencing of CD3+ T cells revealed transcriptional alterations across all time points, with most changes occurring 14 days after DI exposure. At day 21, T cells showed evidence of adaptation with a transcriptional profile resembling that of 7 days before DI. At 7 days after DI, T cells again changed their transcriptional profile. These data suggest that T cells adapt by rewiring their transcriptomes in response to simulated weightlessness and that remodeling cues persist when reexposed to normal gravity.


Asunto(s)
Ingravidez , Humanos , Ingravidez/efectos adversos , Inmersión , Linfocitos T , Voluntarios , Transcriptoma
5.
NPJ Microgravity ; 9(1): 51, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380641

RESUMEN

Although we have sent humans into space for more than 50 years, crucial questions regarding immune response in space conditions remain unanswered. There are many complex interactions between the immune system and other physiological systems in the human body. This makes it difficult to study the combined long-term effects of space stressors such as radiation and microgravity. In particular, exposure to microgravity and cosmic radiation may produce changes in the performance of the immune system at the cellular and molecular levels and in the major physiological systems of the body. Consequently, abnormal immune responses induced in the space environment may have serious health consequences, especially in future long-term space missions. In particular, radiation-induced immune effects pose significant health challenges for long-duration space exploration missions with potential risks to reduce the organism's ability to respond to injuries, infections, and vaccines, and predispose astronauts to the onset of chronic diseases (e.g., immunosuppression, cardiovascular and metabolic diseases, gut dysbiosis). Other deleterious effects encountered by radiation may include cancer and premature aging, induced by dysregulated redox and metabolic processes, microbiota, immune cell function, endotoxin, and pro-inflammatory signal production1,2. In this review, we summarize and highlight the current understanding of the effects of microgravity and radiation on the immune system and discuss knowledge gaps that future studies should address.

6.
Curr Res Transl Med ; 71(3): 103401, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37364351

RESUMEN

Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is an uncommon T-cell lymphoma type with distinct clinical, molecular and genetic features. Establishment of BIA-ALCL cell lines and patient-derived xenograft (PDX) models are essential experimental tools to investigate the molecular pathogenesis of the disease. We characterized a novel BIA-ALCL cell line and PDX model, named BIA-XR1, derived from a patient with textured breast implant who developed lymphoma. Next-generation sequencing revealed a STAT3 mutation, commonly detected in BIA-ALCL, and a unique KRAS mutation reported for the first time in this lymphoma type. Both JAK/STAT3 and RAS/MEK/ERK oncogenic pathways were activated in BIA-XR1, which are targetable with clinically available agents.

7.
Sci Signal ; 16(780): eabq0752, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37040441

RESUMEN

Natural killer (NK) cells recognize virally infected cells and tumors. NK cell function depends on balanced signaling from activating receptors, recognizing products from tumors or viruses, and inhibitory receptors (such as KIR/Ly49), which recognize major histocompatibility complex class I (MHC-I) molecules. KIR/Ly49 signaling preserves tolerance to self but also conveys reactivity toward MHC-I-low target cells in a process known as NK cell education. Here, we found that NK cell tolerance and education were determined by the subcellular localization of the tyrosine phosphatase SHP-1. In mice lacking MHC-I molecules, uneducated, self-tolerant Ly49A+ NK cells showed accumulation of SHP-1 in the activating immune synapse, where it colocalized with F-actin and the signaling adaptor protein SLP-76. Education of Ly49A+ NK cells by the MHC-I molecule H2Dd led to reduced synaptic accumulation of SHP-1, accompanied by augmented signaling from activating receptors. Education was also linked to reduced transcription of Ptpn6, which encodes SHP-1. Moreover, synaptic SHP-1 accumulation was reduced in NK cells carrying the H2Dd-educated receptor Ly49G2 but not in those carrying the noneducating receptor Ly49I. Colocalization of Ly49A and SHP-1 outside of the synapse was more frequent in educated compared with uneducated NK cells, suggesting a role for Ly49A in preventing synaptic SHP-1 accumulation in NK cell education. Thus, distinct patterning of SHP-1 in the activating NK cell synapse may determine NK cell tolerance.


Asunto(s)
Antígenos Ly , Células Asesinas Naturales , Ratones , Animales , Receptores Similares a Lectina de Células NK/metabolismo , Antígenos Ly/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Sinapsis/metabolismo
8.
Pediatr Allergy Immunol ; 34(4): e13951, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102395

RESUMEN

Immunoactinopathies caused by mutations in actin-related proteins are a growing group of inborn errors of immunity (IEI). Immunoactinopathies are caused by a dysregulated actin cytoskeleton and affect hematopoietic cells especially because of their unique capacity to survey the body for invading pathogens and altered self, such as cancer cells. These cell motility and cell-to-cell interaction properties depend on the dynamic nature of the actin cytoskeleton. Wiskott-Aldrich syndrome (WAS) is the archetypical immunoactinopathy and the first described. WAS is caused by loss-of-function and gain-of-function mutations in the actin regulator WASp, uniquely expressed in hematopoietic cells. Mutations in WAS cause a profound disturbance of actin cytoskeleton regulation of hematopoietic cells. Studies during the last 10 years have shed light on the specific effects on different hematopoietic cells, revealing that they are not affected equally by mutations in the WAS gene. Moreover, the mechanistic understanding of how WASp controls nuclear and cytoplasmatic activities may help to find therapeutic alternatives according to the site of the mutation and clinical phenotypes. In this review, we summarize recent findings that have added to the complexity and increased our understanding of WAS-related diseases and immunoactinopathies.


Asunto(s)
Actinas , Síndrome de Wiskott-Aldrich , Humanos , Actinas/genética , Actinas/metabolismo , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Mutación , Fenotipo
9.
Br J Cancer ; 128(6): 982-991, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36631633

RESUMEN

BACKGROUND: Dendritic cell (DC) vaccines for cancer therapy offer the possibility to let the patient's own immune system kill cancer cells. However, DC vaccines have shown less efficacy than expected due to failure to induce cancer cell killing and by activating T regulatory cells. METHODS: We tested if inhibition of signalling via WASp and Arp2/3 using the small molecule CK666 would enhance DC-mediated killing of tumour cells in vitro and in vivo. RESULTS: Using CK666 during the ex vivo phase of antigen processing of ovalbumin (OVA), murine and human DCs showed decreased phagosomal acidification, indicating activation of the cross-presentation pathway. When compared to untreated DCs, DCs treated with CK666 during uptake and processing of OVA-induced increased proliferation of OVA-specific CD8+ OT-I T cells in vitro and in vivo. Using the aggressive B16-mOVA melanoma tumour model, we show that mice injected with CK666-treated DCs and OVA-specific CD8+ OT-I T cells showed higher rejection of B16 melanoma cells when compared to mice receiving non-treated DCs. This resulted in the prolonged survival of tumour-bearing mice receiving CK666-treated DCs. Moreover, combining CK666-treated DCs with the checkpoint inhibitor anti-PD1 further prolonged survival. CONCLUSION: Our data suggest that the small molecule inhibitor CK666 is a good candidate to enhance DC cross-presentation for cancer therapy.


Asunto(s)
Reactividad Cruzada , Vacunas , Ratones , Animales , Humanos , Linfocitos T CD8-positivos , Células Dendríticas , Presentación de Antígeno , Ovalbúmina/metabolismo , Vacunas/metabolismo , Ratones Endogámicos C57BL
10.
Nat Commun ; 13(1): 6733, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36347843

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, involving neuroinflammation and T cell infiltration in the central nervous system. However, the contribution of T cell responses to the pathology of the disease is not fully understood. Here we show, by flow cytometric analysis of blood and cerebrospinal fluid (CSF) samples of a cohort of 89 newly diagnosed ALS patients in Stockholm, Sweden, that T cell phenotypes at the time of diagnosis are good predictors of disease outcome. High frequency of CD4+FOXP3- effector T cells in blood and CSF is associated with poor survival, whereas high frequency of activated regulatory T (Treg) cells and high ratio between activated and resting Treg cells in blood are associated with better survival. Besides survival, phenotypic profiling of T cells could also predict disease progression rate. Single cell transcriptomics analysis of CSF samples shows clonally expanded CD4+ and CD8+ T cells in CSF, with characteristic gene expression patterns. In summary, T cell responses associate with and likely contribute to disease progression in ALS, supporting modulation of adaptive immunity as a viable therapeutic option.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Linfocitos T CD8-positivos/patología , Enfermedades Neurodegenerativas/metabolismo , Linfocitos T Reguladores , Progresión de la Enfermedad
11.
Br J Cancer ; 127(11): 2060-2071, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36138076

RESUMEN

BACKGROUND: p53 mutants contribute to the chronic inflammatory tumour microenvironment (TME). In this study, we address the mechanism of how p53 mutants lead to chronic inflammation in tumours and how to transform it to restore cancer immune surveillance. METHODS: Our analysis of RNA-seq data from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) project revealed that mutant p53 (mtp53) cancers correlated with chronic inflammation. We used cell-based assays and a mouse model to discover a novel gain of function of mtp53 and the effect of the mtp53 reactivating compound APR-246 on the anti-tumour immune response. RESULTS: We found that tumour samples from patients with breast carcinoma carrying mtp53 showed elevated Interferon (IFN) signalling, Tumour Inflammation Signature (TIS) score and infiltration of CD8+ T cells compared to wild type p53 (wtp53) tumours. We showed that the expression of IFN and immune checkpoints were elevated in tumour cells in a mtp53-dependent manner, suggesting a novel gain of function. Restoration of wt function to mtp53 by APR-246 induced the expression of endogenous retroviruses, IFN signalling and repressed immune checkpoints. Moreover, APR-246 promoted CD4+ T cells infiltration and IFN signalling and prevented CD8+ T cells exhaustion within the TME in vivo. CONCLUSIONS: Breast carcinomas with mtp53 displayed enhanced inflammation. APR-246 boosted the interferon response or represses immune checkpoints in p53 mutant tumour cells, and restores cancer immune surveillance in vivo.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Mutación con Ganancia de Función , Neoplasias/genética , Interferones/genética , Interferones/metabolismo , Inflamación/genética , Microambiente Tumoral/genética
12.
Clin Transl Med ; 12(7): e887, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35875970

RESUMEN

BACKGROUND: CCR2 is involved in maintaining immune homeostasis and regulating immune function. This study aims to elucidate the mechanism by which CCR2 regulates B-cell signalling. METHODS: In Ccr2-knockout mice, the development and differentiation of B cells, BCR proximal signals, actin movement and B-cell immune response were determined. Besides, the level of CCR2 in PBMC of SLE patients was analysed by bioinformatics. RESULTS: CCR2 deficiency reduces the proportion and number of follicular B cells, upregulates BCR proximal signalling and enhances the oxidative phosphorylation of B cells. Meanwhile, increased actin filaments aggregation and its associated early-activation events of B cells are also induced by CCR2 deficiency. The MST1/mTORC1/STAT1 axis in B cells is responsible for the regulation of actin remodelling, metabolic activities and transcriptional signalling, specific MST1, mTORC1 or STAT1 inhibitor can rescue the upregulated BCR signalling. Glomerular IgG deposition is obvious in CCR2-deficient mice, accompanied by increased anti-dsDNA IgG level. Additionally, the CCR2 expression in peripheral B cells of SLE patients is decreased than that of healthy controls. CONCLUSIONS: CCR2 can utilise MST1/mTORC1/STAT1 axis to regulate BCR signalling. The interaction between CCR2 and BCR may contribute to exploring the mechanism of autoimmune diseases.


Asunto(s)
Lupus Eritematoso Sistémico , Receptores de Quimiocina , Actinas/metabolismo , Animales , Inmunoglobulina G/metabolismo , Leucocitos Mononucleares/metabolismo , Lupus Eritematoso Sistémico/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Quimiocina/metabolismo , Factor de Transcripción STAT1/metabolismo
13.
J Leukoc Biol ; 111(4): 877-891, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34528729

RESUMEN

B cells are essential for Ab production during humoral immune responses. From decades of B cell research, there is now a detailed understanding of B cell subsets, development, functions, and most importantly, signaling pathways. The complicated pathways in B cells and their interactions with each other are stage-dependent, varying with surface marker expression during B cell development. With the increasing understanding of B cell development and signaling pathways, the mechanisms underlying B cell related diseases are being unraveled as well, making it possible to provide more precise and effective treatments. In this review, we describe several essential and recently discovered signaling pathways in B cell development and take a look at newly developed therapeutic strategies targeted at B cell signaling.


Asunto(s)
Subgrupos de Linfocitos B , Linfocitos B , Inmunidad Humoral , Activación de Linfocitos , Receptores de Antígenos de Linfocitos B , Transducción de Señal
14.
J Leukoc Biol ; 111(3): 711-723, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34312907

RESUMEN

Invariant natural killer T cells (iNKTs) bridge the innate immunity with the adaptive immunity and their interaction with B cells has been extensively studied. Here, we give a complete overview of these two cells, from their mechanism of interaction to clinical prospects and existing problems. In our introduction, we describe the relationship between iNKTs and B cells and explore the current research hotspots and future directions. We begin with how B cells interact and benefit from the innate and adaptive help of iNKTs. Next, we describe the multiple roles of these cells in infections, autoimmunity, and cancers. Lastly, we look into the potential immunotherapies that can be based on iNKTs and the possible treatments for infectious, autoimmune, and other diseases.


Asunto(s)
Células T Asesinas Naturales , Inmunidad Adaptativa , Inmunidad Innata , Inmunoterapia , Activación de Linfocitos
15.
J Leukoc Biol ; 111(4): 793-803, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34431547

RESUMEN

Dendritic cells (DCs) devoid of the actin regulator Wiskott-Aldrich syndrome protein (WASp) show reduced directed migration and decreased formation of podosome adhesion structures. We examined DCs expressing a gain-of-function mutation in WASp, WASp L272P, identified in X-linked neutropenia patients. Analysis of WASp L272P DCs was compared to WASp-deficient DCs to examine how WASp activity influences DC migratory responses. In confined space, WASp-deficient DCs had increased migration speed whereas WASp L272P DCs had similar average speed but increased speed fluctuations, reduced displacement, and atypical rounded morphology, compared to wild-type (WT) DCs. Using an ear inflammation model and flow cytometry analysis, WT, WASp-deficient, and WASp L272P DCs were found to migrate in comparable numbers to the draining lymph nodes (LNs). However, histology analysis revealed that migratory DCs of WASp deficient and WASp L272P mice were mainly located in the collagenous capsule of the LN whereas WT DCs were located inside the LN. Analysis of ultrastructural features revealed that WASp L272P DCs had reduced cell area but formed larger podosome structures when compared to WT DCs. Together, our data suggest that WASp activity regulates DC migration and that loss-of-function and gain-of-function in WASp activity lead to different and phenotype-specific DC migratory behavior.


Asunto(s)
Neutropenia , Proteína del Síndrome de Wiskott-Aldrich/genética , Actinas/metabolismo , Animales , Movimiento Celular/fisiología , Células Dendríticas/metabolismo , Mutación con Ganancia de Función , Humanos , Ratones , Neutropenia/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
16.
J Allergy Clin Immunol ; 149(3): 1069-1084, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34384840

RESUMEN

BACKGROUND: B-cell affinity maturation in germinal center relies on regulated actin dynamics for cell migration and cell-to-cell communication. Activating mutations in the cytoskeletal regulator Wiskott-Aldrich syndrome protein (WASp) cause X-linked neutropenia (XLN) with reduced serum level of IgA. OBJECTIVE: We investigated the role of B cells in XLN pathogenesis. METHODS: We examined B cells from 6 XLN patients, 2 of whom had novel R268W and S271F mutations in WASp. By using immunized XLN mouse models that carry the corresponding patient mutations, WASp L272P or WASp I296T, we examined the B-cell response. RESULTS: XLN patients had normal naive B cells and plasmablasts, but reduced IgA+ B cells and memory B cells, and poor B-cell proliferation. On immunization, XLN mice had a 2-fold reduction in germinal center B cells in spleen, but with increased generation of plasmablasts and plasma cells. In vitro, XLN B cells showed reduced immunoglobulin class switching and aberrant cell division as well as increased production of immunoglobulin-switched plasma cells. CONCLUSIONS: Overactive WASp predisposes B cells for premature differentiation into plasma cells at the expense of cell proliferation and immunoglobulin class switching.


Asunto(s)
Linfocitos B , Neutropenia , Proteína del Síndrome de Wiskott-Aldrich , Animales , Linfocitos B/citología , División Celular , Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Inmunoglobulina A , Ratones , Neutropenia/genética , Células Plasmáticas/patología , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
18.
Front Immunol ; 12: 738540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539675

RESUMEN

Immunoglobin G4-related disease (IgG4-RD) is one of the newly discovered autoimmune diseases characterized by elevated serum IgG4 concentrations and multi-organ fibrosis. Despite considerable research and recent advances in the identification of underlying immunological processes, the etiology of this disease is still not clear. Adaptive immune cells, including different types of T and B cells, and cytokines secreted by these cells play a vital role in the pathogenesis of IgG4-RD. Antigen-presenting cells are stimulated by pathogens and, thus, contribute to the activation of naïve T cells and differentiation of different T cell subtypes, including helper T cells (Th1 and Th2), regulatory T cells, and T follicular helper cells. B cells are activated and transformed to plasma cells by T cell-secreted cytokines. Moreover, macrophages, and some important factors (TGF-ß, etc.) promote target organ fibrosis. Understanding the role of these cells and cytokines implicated in the pathogenesis of IgG4-RD will aid in developing strategies for future disease treatment and drug development. Here, we review the most recent insights on IgG4-RD, focusing on immune dysregulation involved in the pathogenesis of this autoimmune condition.


Asunto(s)
Inmunidad Adaptativa , Autoinmunidad , Sistema Inmunológico/inmunología , Inmunidad Innata , Enfermedad Relacionada con Inmunoglobulina G4/inmunología , Inmunoglobulina G/inmunología , Leucocitos/inmunología , Macrófagos/inmunología , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Autoantígenos/inmunología , Autoantígenos/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Humanos , Sistema Inmunológico/metabolismo , Inmunoglobulina G/metabolismo , Enfermedad Relacionada con Inmunoglobulina G4/metabolismo , Leucocitos/metabolismo , Macrófagos/metabolismo , Transducción de Señal
19.
Signal Transduct Target Ther ; 6(1): 345, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552055

RESUMEN

The SARS-CoV-2 infection causes severe immune disruption. However, it is unclear if disrupted immune regulation still exists and pertains in recovered COVID-19 patients. In our study, we have characterized the immune phenotype of B cells from 15 recovered COVID-19 patients, and found that healthy controls and recovered patients had similar B-cell populations before and after BCR stimulation, but the frequencies of PBC in patients were significantly increased when compared to healthy controls before stimulation. However, the percentage of unswitched memory B cells was decreased in recovered patients but not changed in healthy controls upon BCR stimulation. Interestingly, we found that CD19 expression was significantly reduced in almost all the B-cell subsets in recovered patients. Moreover, the BCR signaling and early B-cell response were disrupted upon BCR stimulation. Mechanistically, we found that the reduced CD19 expression was caused by the dysregulation of cell metabolism. In conclusion, we found that SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism, which may provide a new intervention target to cure COVID-19.


Asunto(s)
Antígenos CD19/inmunología , Linfocitos B/inmunología , COVID-19/inmunología , Regulación hacia Abajo/inmunología , Síndromes de Inmunodeficiencia/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/complicaciones , Chlorocebus aethiops , Femenino , Humanos , Síndromes de Inmunodeficiencia/etiología , Síndromes de Inmunodeficiencia/virología , Memoria Inmunológica , Masculino , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos B/inmunología , Células Vero
20.
Front Immunol ; 12: 725587, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512655

RESUMEN

With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Enfermedades del Sistema Inmune/genética , Animales , Humanos , Patología Molecular , Fenotipo , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...