Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 19, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212746

RESUMEN

BACKGROUND: Utilization of commensal bacteria for delivery of medicinal proteins, such as vaccine antigens, is an emerging strategy. Here, we describe two novel food-grade strains of lactic acid bacteria, Lactiplantibacillus pentosus KW1 and KW2, as well as newly developed tools for using this relatively unexplored but promising bacterial species for production and surface-display of heterologous proteins. RESULTS: Whole genome sequencing was performed to investigate genomic features of both strains and to identify native proteins enabling surface display of heterologous proteins. Basic characterization of the strains revealed the optimum growth temperatures for both strains to be 35-37 °C, with peak heterologous protein production at 33 °C (KW1) and 37 °C (KW2). Negative staining revealed that only KW1 produces closely bound exopolysaccharides. Production of heterologous proteins with the inducible pSIP-expression system enabled high expression in both strains. Exposure to KW1 and KW2 skewed macrophages toward the antigen presenting state, indicating potential adjuvant properties. To develop these strains as delivery vehicles, expression of the mycobacterial H56 antigen was fused to four different strain-specific surface-anchoring sequences. CONCLUSION: All experiments that enabled comparison of heterologous protein production revealed KW1 to be the better recombinant protein production host. Use of the pSIP expression system enabled successful construction of L. pentosus strains for production and surface display of an antigen, underpinning the potential of these strains as novel delivery vehicles.


Asunto(s)
Bacterias , Proteínas Recombinantes/metabolismo , Bacterias/metabolismo , Secuenciación Completa del Genoma
2.
Methods Mol Biol ; 2657: 27-51, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37149521

RESUMEN

Lytic polysaccharide monooxygenases perform oxidative cleavage of glycosidic bonds in various polysaccharides. The majority of LMPOs studied so far possess activity on either cellulose or chitin and analysis of these activities is therefore the main focus of this review. Notably, however, the number of LPMOs that are active on other polysaccharides is increasing. The products generated by LPMOs from cellulose are either oxidized in the downstream end (at C1) or upstream end (at C4), or at both ends. These modifications only result in small structural changes, which makes both chromatographic separation and product identification by mass spectrometry challenging. The changes in physicochemical properties that are associated with oxidation need to be considered when choosing analytical approaches. C1 oxidation leads to a sugar that is no longer reducing but instead has an acidic functionality, whereas C4 oxidation leads to products that are inherently labile at high and low pH and that exist in a keto-gemdiol equilibrium that is strongly shifted towards the gemdiol in aqueous solutions. Partial degradation of C4-oxidized products leads to the formation of native products, which could explain why some authors claim to have observed glycoside hydrolase activity for LPMOs. Notably, apparent glycoside hydrolase activity may also be due to small amounts of contaminating glycoside hydrolases since these normally have much higher catalytic rates than LPMOs. The low catalytic turnover rates of LPMOs necessitate the use of sensitive product detection methods, which limits the analytical possibilities considerably. Modern liquid chromatography and mass spectrometry have become essential tools for evaluating LPMO activity and this chapter provides an overview of available methods together with a few novel tools. The methods described constitute a suite of techniques for analyzing oxidized carbohydrate products, which can be applied to LPMOs as well as other carbohydrate-active redox enzymes.


Asunto(s)
Oxigenasas de Función Mixta , Polisacáridos , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Cromatografía Liquida , Espectrometría de Masas , Oxidación-Reducción , Celulosa/metabolismo , Glicósido Hidrolasas/metabolismo
3.
Essays Biochem ; 67(3): 443-454, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36912209

RESUMEN

Non-carbohydrate modifications such as acetylations are widespread in food stuffs as well as they play important roles in diverse biological processes. These modifications meet the gut environment and are removed from their carbohydrate substrates by the resident microbiota. Among the most abundant modifications are O-acetylations, contributing to polysaccharides physico-chemical properties such as viscosity and gelling ability, as well as reducing accessibility for glycosyl hydrolases, and thus hindering polysaccharide degradation. Of particular note, O-acetylations increase the overall complexity of a polymer, thus requiring a more advanced degrading machinery for microbes to utilize it. This minireview describes acetylesterases from the gut microbiota that deacetylate various food polysaccharides, either as natural components of food, ingredients, stabilizers of microbial origin, or as part of microbes for food and beverage preparations. These enzymes include members belonging to at least 8 families in the CAZy database, as well as a large number of biochemically characterized esterases that have not been classified yet. Despite different structural folds, most of these acetylesterases have a common acid-base mechanism and belong to the SGNH hydrolase superfamily. We highlight examples of acetylesterases that are highly specific to one substrate and to the position of the acetyl group on the glycosyl residue of the carbohydrate, while other members that have more broad substrate specificity. Current research aimed at unveiling the functions and regioselectivity of acetylesterases will help providing fundamental mechanistic understanding on how dietary components are utilized in the human gut and will aid developing applications of these enzymes to manufacture novel industrial products.


Asunto(s)
Esterasas , Microbioma Gastrointestinal , Humanos , Esterasas/química , Esterasas/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo
4.
J Agric Food Chem ; 71(6): 2667-2683, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36724217

RESUMEN

A holistic utilization of all lignocellulosic wood biomass, instead of the current approach of using only the cellulose fraction, is crucial for the efficient, ecological, and economical use of the forest resources. Use of wood constituents in the food and feed sector is a potential way of promoting the global economy. However, industrially established food products utilizing such components are still scarce, with the exception of cellulose derivatives. Hemicelluloses that include xylans and mannans are major constituents of wood. The wood hemicelluloses are structurally similar to hemicelluloses from crops, which are included in our diet, for example, as a part of dietary fibers. Hence, structurally similar wood hemicelluloses have the potential for similar uses. We review the current status and future potential of wood hemicelluloses as food ingredients. We include an inventory of the extraction routes of wood hemicelluloses, their physicochemical properties, and some of their gastrointestinal characteristics, and we also consider the regulatory route that research findings need to follow to be approved for food solutions, as well as the current status of the wood hemicellulose applications on that route.


Asunto(s)
Ingredientes Alimentarios , Ingredientes Alimentarios/análisis , Madera/química , Polisacáridos/química , Celulosa/química
5.
Commun Biol ; 5(1): 444, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545700

RESUMEN

The study of specific glycan uptake and metabolism is an effective tool in aiding with the continued unravelling of the complexities in the human gut microbiome. To this aim fluorescent labelling of glycans may provide a powerful route towards this target. Here, we successfully used the fluorescent label 2-aminobenzamide (2-AB) to monitor and study microbial degradation of labelled glycans. Both single strain and co-cultured fermentations of microbes from the common human-gut derived Bacteroides genus, are able to grow when supplemented with 2-AB labelled glycans of different monosaccharide composition, degrees of acetylation and polymerization. Utilizing a multifaceted approach that combines chromatography, mass spectrometry, microscopy and flow cytometry techniques, it is possible to better understand the metabolism of labelled glycans in both supernatants and at a single cell level. We envisage this combination of complementary techniques will help further the understanding of substrate specificity and the role it plays within microbial communities.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacteroides/metabolismo , Humanos , Polisacáridos/metabolismo , Especificidad por Sustrato
6.
mBio ; 12(3): e0362820, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34061597

RESUMEN

ß-Mannans are hemicelluloses that are abundant in modern diets as components in seed endosperms and common additives in processed food. Currently, the collective understanding of ß-mannan saccharification in the human colon is limited to a few keystone species, which presumably liberate low-molecular-weight mannooligosaccharide fragments that become directly available to the surrounding microbial community. Here, we show that a dominant butyrate producer in the human gut, Faecalibacterium prausnitzii, is able to acquire and degrade various ß-mannooligosaccharides (ß-MOS), which are derived by the primary mannanolytic activity of neighboring gut microbiota. Detailed biochemical analyses of selected protein components from their two ß-MOS utilization loci (F. prausnitzii ß-MOS utilization loci [FpMULs]) supported a concerted model whereby the imported ß-MOS are stepwise disassembled intracellularly by highly adapted enzymes. Coculturing experiments of F. prausnitzii with the primary degraders Bacteroides ovatus and Roseburia intestinalis on polymeric ß-mannan resulted in syntrophic growth, thus confirming the high efficiency of the FpMULs' uptake system. Genomic comparison with human F. prausnitzii strains and analyses of 2,441 public human metagenomes revealed that FpMULs are highly conserved and distributed worldwide. Together, our results provide a significant advance in the knowledge of ß-mannan metabolism and the degree to which its degradation is mediated by cross-feeding interactions between prominent beneficial microbes in the human gut. IMPORTANCE Commensal butyrate-producing bacteria belonging to the Firmicutes phylum are abundant in the human gut and are crucial for maintaining health. Currently, insight is lacking into how they target otherwise indigestible dietary fibers and into the trophic interactions they establish with other glycan degraders in the competitive gut environment. By combining cultivation, genomic, and detailed biochemical analyses, this work reveals the mechanism enabling F. prausnitzii, as a model Ruminococcaceae within Firmicutes, to cross-feed and access ß-mannan-derived oligosaccharides released in the gut ecosystem by the action of primary degraders. A comprehensive survey of human gut metagenomes shows that FpMULs are ubiquitous in human populations globally, highlighting the importance of microbial metabolism of ß-mannans/ß-MOS as a common dietary component. Our findings provide a mechanistic understanding of the ß-MOS utilization capability by F. prausnitzii that may be exploited to select dietary formulations specifically boosting this beneficial symbiont, and thus butyrate production, in the gut.


Asunto(s)
Faecalibacterium prausnitzii/genética , Faecalibacterium prausnitzii/metabolismo , Microbioma Gastrointestinal/genética , Mananos/metabolismo , Oligosacáridos/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Colon/microbiología , Dieta , Faecalibacterium prausnitzii/crecimiento & desarrollo , Microbioma Gastrointestinal/fisiología , Humanos , Mananos/clasificación , Metagenómica
7.
Commun Biol ; 4(1): 754, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140625

RESUMEN

The charophycean green algae (CGA or basal streptophytes) are of particular evolutionary significance because their ancestors gave rise to land plants. One outstanding feature of these algae is that their cell walls exhibit remarkable similarities to those of land plants. Xyloglucan (XyG) is a major structural component of the cell walls of most land plants and was originally thought to be absent in CGA. This study presents evidence that XyG evolved in the CGA. This is based on a) the identification of orthologs of the genetic machinery to produce XyG, b) the identification of XyG in a range of CGA and, c) the structural elucidation of XyG, including uronic acid-containing XyG, in selected CGA. Most notably, XyG fucosylation, a feature considered as a late evolutionary elaboration of the basic XyG structure and orthologs to the corresponding biosynthetic enzymes are shown to be present in Mesotaenium caldariorum.


Asunto(s)
Pared Celular/química , Chlorophyceae/metabolismo , Embryophyta/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Zygnematales/metabolismo , Evolución Biológica , Chlorophyceae/genética , Genoma de Planta/genética , Glicosilación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Zygnematales/genética
8.
Environ Microbiol Rep ; 13(5): 559-581, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34036727

RESUMEN

The Bacteroidetes phylum is renowned for its ability to degrade a wide range of complex carbohydrates, a trait that has enabled its dominance in many diverse environments. The best studied species inhabit the human gut microbiome and use polysaccharide utilization loci (PULs), discrete genetic structures that encode proteins involved in the sensing, binding, deconstruction, and import of target glycans. In many environmental species, polysaccharide degradation is tightly coupled to the phylum-exclusive type IX secretion system (T9SS), which is used for the secretion of certain enzymes and is linked to gliding motility. In addition, within specific species these two adaptive systems (PULs and T9SS) are intertwined, with PUL-encoded enzymes being secreted by the T9SS. Here, we discuss the most noteworthy PUL and non-PUL mechanisms that confer specific and rapid polysaccharide degradation capabilities to the Bacteroidetes in a range of environments. We also acknowledge that the literature showcasing examples of PULs is rapidly expanding and developing a set of assumptions that can be hard to track back to original findings. Therefore, we present a simple universal description of conserved PUL functions and how they are determined, while proposing a common nomenclature describing PULs and their components, to simplify discussion and understanding of PUL systems.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Bacteroidetes , Transporte Biológico , Humanos , Polisacáridos/metabolismo
9.
Nat Commun ; 11(1): 5773, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188211

RESUMEN

Beneficial modulation of the gut microbiome has high-impact implications not only in humans, but also in livestock that sustain our current societal needs. In this context, we have tailored an acetylated galactoglucomannan (AcGGM) fibre to match unique enzymatic capabilities of Roseburia and Faecalibacterium species, both renowned butyrate-producing gut commensals. Here, we test the accuracy of AcGGM within the complex endogenous gut microbiome of pigs, wherein we resolve 355 metagenome-assembled genomes together with quantitative metaproteomes. In AcGGM-fed pigs, both target populations differentially express AcGGM-specific polysaccharide utilization loci, including novel, mannan-specific esterases that are critical to its deconstruction. However, AcGGM-inclusion also manifests a "butterfly effect", whereby numerous metabolic changes and interdependent cross-feeding pathways occur in neighboring non-mannanolytic populations that produce short-chain fatty acids. Our findings show how intricate structural features and acetylation patterns of dietary fibre can be customized to specific bacterial populations, with potential to create greater modulatory effects at large.


Asunto(s)
Fibras de la Dieta/farmacología , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Metabolismo Secundario , Acetilación/efectos de los fármacos , Animales , Butiratos/metabolismo , Ciego/metabolismo , Dieta , Conducta Alimentaria/efectos de los fármacos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Genoma , Masculino , Mananos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Metagenómica , Análisis de Componente Principal , Proteoma/metabolismo , ARN Ribosómico 16S/genética , Metabolismo Secundario/efectos de los fármacos , Porcinos , Madera/química
10.
Sci Rep ; 10(1): 13197, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764705

RESUMEN

Polysaccharides from plant biomass are the most abundant renewable chemicals on Earth and can potentially be converted to a wide variety of useful glycoconjugates. Potential applications of glycoconjugates include therapeutics and drug delivery, vaccine development and as fine chemicals. While anomeric hydroxyl groups of carbohydrates are amenable to a variety of useful chemical modifications, selective cross-coupling to non-reducing ends has remained challenging. Several lytic polysaccharide monooxygenases (LPMOs), powerful enzymes known for their application in cellulose degradation, specifically oxidize non-reducing ends, introducing carbonyl groups that can be utilized for chemical coupling. This study provides a simple and highly specific approach to produce oxime-based glycoconjugates from LPMO-functionalized oligosaccharides. The products are evaluated by HPLC, mass spectrometry and NMR. Furthermore, we demonstrate potential biodegradability of these glycoconjugates using selective enzymes.


Asunto(s)
Glicoconjugados/química , Glicoconjugados/síntesis química , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Secuencia de Carbohidratos , Técnicas de Química Sintética , Estereoisomerismo , Especificidad por Sustrato
11.
Microorganisms ; 8(7)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630095

RESUMEN

The secretion of extracellular vesicles, EVs, is a common process in both prokaryotic and eukaryotic cells for intercellular communication, survival, and pathogenesis. Previous studies have illustrated the presence of EVs in supernatants from pure cultures of bacteria, including Gram-positive and Gram-negative glycan-degrading gut commensals. However, the isolation and characterization of EVs secreted by a complex microbial community have not been clearly reported. In a recent paper, we showed that wood-derived, complex ß-mannan, which shares a structural similarity with conventional dietary fibers, can be used to modulate the porcine gut microbiota composition and activity. In this paper, we investigated the production, size, composition, and proteome of EVs secreted by pig fecal microbiota after 24 h enrichment on complex ß-mannan. Using transmission electron microscopy and nanoparticle tracking analysis, we identified EVs with an average size of 165 nm. We utilized mass spectrometry-based metaproteomic profiling of EV proteins against a database of 355 metagenome-assembled genomes (MAGs) from the porcine colon and thereby identified 303 proteins. For EVs isolated from the culture grown on ß-mannan, most proteins mapped to two MAGs, MAG53 and MAG272, belonging to the orders Clostridiales and Bacilli, respectively. Furthermore, the MAG with the third-most-detected protein was MAG 343, belonging to the order Enterobacteriales. The most abundant proteins detected in the ß-mannan EVs proteome were involved in translation, energy production, amino acid, and carbohydrate transport, as well as metabolism. Overall, this proof-of-concept study demonstrates the successful isolation of EVs released from a complex microbial community; furthermore, the protein content of the EVs reflects the response of specific microbes to the available carbohydrate source.

12.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32414797

RESUMEN

Traditional sour beers are produced by spontaneous fermentations involving numerous yeast and bacterial species. One of the traits that separates sour beers from ales and lagers is the high concentration of organic acids such as lactic acid and acetic acid, which results in reduced pH and increased acidic taste. Several challenges complicate the production of sour beers through traditional methods. These include poor process control, lack of consistency in product quality, and lengthy fermentation times. This review summarizes the methods for traditional sour beer production with a focus on the use of lactobacilli to generate this beverage. In addition, the review describes the use of selected pure cultures of microorganisms with desirable properties in conjunction with careful application of processing steps. Together, this facilitates the production of sour beer with a higher level of process control and more rapid fermentation compared to traditional methods.


Asunto(s)
Cerveza/microbiología , Fermentación , Microbiología de Alimentos/métodos , Lactobacillales/fisiología , Gusto
13.
Water Environ Res ; 92(11): 1948-1955, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32363700

RESUMEN

Solid residues such as primary sludge (PS), waste activated sludge (WAS), and food waste (FW) can be stabilized through anaerobic digestion (AD). Application of the thermal hydrolysis process (THP) prior to AD results in several benefits in AD and dewatering. However, soluble recalcitrant compounds associated with Maillard reactions have been identified after THP which can impact downstream processes and water discharge limits. In this study, the soluble colloidal chemical oxygen demand, color, ultraviolet absorbance at 254 nm and dissolved organic nitrogen in seven full-scale THP facilities were quantified and compared. The THP substrate influenced the concentration of soluble melanoidin-associated compounds in the digestates. THP implementation in five water resource recovery facilities (WRRFs) was modeled and found to give a 3-8 mg/L increase on the water effluent COD concentration depending on the PS/WAS ratio. The results provide novel information useful in planning new WRRFs and optimization of existing facilities. PRACTITIONER POINTS: High amounts of WAS in substrate resulted in higher concentrations of CODsc, color and dissolved organic nitrogen in the digestate. Food waste treated at 145°C showed equal or lower concentrations of all components compared with sludge operated at 165°C. Installation of THP will increase the COD concentration in the water effluent of a water resource recovery facility. The characteristics of the THP substrate are important to consider in cost/benefit analysis when planning the installation of THP.


Asunto(s)
Alimentos , Eliminación de Residuos , Anaerobiosis , Hidrólisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
14.
Front Microbiol ; 11: 279, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153550

RESUMEN

Increasing popularity of sour beer urges the development of novel solutions for controlled fermentations both for fast acidification and consistency in product flavor and quality. One possible approach is the use of Saccharomyces cerevisiae in co-fermentation with Lactobacillus species, which produce lactic acid as a major end-product of carbohydrate catabolism. The ability of lactobacilli to ferment beer is determined by their capacity to sustain brewing-related stresses, including hop iso-α acids, low pH and ethanol. Here, we evaluated the tolerance of Lactobacillus brevis BSO464 and Lactobacillus buchneri CD034 to beer conditions and different fermentation strategies as well as their use in the brewing process in mixed fermentation with a brewer's yeast, S. cerevisiae US-05. Results were compared with those obtained with a commercial Lactobacillus plantarum (WildBrewTM Sour Pitch), a strain commonly used for kettle souring. In pure cultures, the three strains showed varying susceptibility to stresses, with L. brevis being the most resistant and L. plantarum displaying the lowest stress tolerance. When in co-fermentation with S. cerevisiae, both L. plantarum and L. brevis were able to generate sour beer in as little as 21 days, and their presence positively influenced the composition of flavor-active compounds. Both sour beers were sensorially different from each other and from a reference beer fermented by S. cerevisiae alone. While the beer produced with L. plantarum had an increased intensity in fruity odor and dried fruit odor, the L. brevis beer had a higher total flavor intensity, acidic taste and astringency. Remarkably, the beer generated with L. brevis was perceived as comparable to a commercial sour beer in multiple sensory attributes. Taken together, this study demonstrates the feasibility of using L. brevis BSO464 and L. plantarum in co-fermentation with S. cerevisiae for controlled sour beer production with shortened production time.

15.
Proc Natl Acad Sci U S A ; 117(13): 7122-7130, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32170022

RESUMEN

ß-mannans and xylans are important components of the plant cell wall and they are acetylated to be protected from degradation by glycoside hydrolases. ß-mannans are widely present in human and animal diets as fiber from leguminous plants and as thickeners and stabilizers in processed foods. There are many fully characterized acetylxylan esterases (AcXEs); however, the enzymes deacetylating mannans are less understood. Here we present two carbohydrate esterases, RiCE2 and RiCE17, from the Firmicute Roseburia intestinalis, which together deacetylate complex galactoglucomannan (GGM). The three-dimensional (3D) structure of RiCE17 with a mannopentaose in the active site shows that the CBM35 domain of RiCE17 forms a confined complex, where the axially oriented C2-hydroxyl of a mannose residue points toward the Ser41 of the catalytic triad. Cavities on the RiCE17 surface may accept galactosylations at the C6 positions of mannose adjacent to the mannose residue being deacetylated (subsite -1 and +1). In-depth characterization of the two enzymes using time-resolved NMR, high-performance liquid chromatography (HPLC), and mass spectrometry demonstrates that they work in a complementary manner. RiCE17 exclusively removes the axially oriented 2-O-acetylations on any mannose residue in an oligosaccharide, including double acetylated mannoses, while the RiCE2 is active on 3-O-, 4-O-, and 6-O-acetylations. Activity of RiCE2 is dependent on RiCE17 removing 2-O-acetylations from double acetylated mannose. Furthermore, transacetylation of oligosaccharides with the 2-O-specific RiCE17 provided insight into how temperature and pH affects acetyl migration on manno-oligosaccharides.


Asunto(s)
Clostridiales/enzimología , Esterasas/metabolismo , Mananos/metabolismo , Esterasas/química , Picea , Conformación Proteica , Especificidad por Sustrato
16.
J Agric Food Chem ; 68(1): 301-314, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31820631

RESUMEN

Xylooligosaccharides (XOS) from woody biomass were evaluated as a substrate for secondary lactic acid bacteria (LAB) fermentation in sour beer production. XOS were extracted from birch (Betula pubescens) and added to beer to promote the growth of Lactobacillus brevis BSO 464. Growth, pH, XOS degradation, and metabolic products were monitored throughout fermentations, and the final beer was evaluated sensorically. XOS were utilized, metabolic compounds were produced (1800 mg/L lactic acid), and pH was reduced from 4.1 to 3.6. Secondary fermentation changed sensory properties significantly, and the resulting sour beer was assessed as similar to a commercial reference in multiple attributes, including acidic taste. Overall, secondary LAB fermentation induced by wood-derived XOS provided a new approach to successfully produce sour beer with reduced fermentation time (from 1-3 years to 4 weeks). The presented results demonstrate how hemicellulosic biomass can be valorized for beverage production and to obtain sour beer with improved process control.


Asunto(s)
Cerveza/análisis , Microbiología de Alimentos/métodos , Glucuronatos/metabolismo , Lactobacillales/metabolismo , Oligosacáridos/metabolismo , Extractos Vegetales/metabolismo , Madera/química , Cerveza/microbiología , Betula/química , Betula/metabolismo , Betula/microbiología , Fermentación , Humanos , Concentración de Iones de Hidrógeno , Lactobacillales/crecimiento & desarrollo , Gusto , Madera/metabolismo , Madera/microbiología
17.
Water Sci Technol ; 80(7): 1338-1346, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31850885

RESUMEN

Organic waste fractions such as sewage sludge, food waste and manure can be stabilized by anaerobic digestion (AD) to produce renewable energy in the form of biogas. Following AD, the digested solid fraction (digestate) is usually dewatered to reduce the volume before transportation. Post-AD treatments such as the Post-AD thermal hydrolysis process (Post-AD THP) have been developed to improve the dewatering, but the mode of action is not well understood. In this study, samples from 32 commercial full-scale plants were used to assess the impact of Post-AD THP on a broad range of raw materials. Maximum dewatered cake solids after Post-AD THP was predicted by thermogravimetric analysis (TGA). Post-AD THP changed the moisture distribution of the samples by increasing the free water fraction. A consistent improvement in predicted dewatered cake solids was achieved across the 32 samples tested, on average increasing the dry solids concentration by 87%. A full-scale trial showed that dewatering Post-AD THP digestate at 80 °C improved dewatered cake solids above the predictions by TGA at 35 °C. In conclusion, dewatered cake solids were significantly improved by Post-AD THP, reducing the volume of dewatered cake for disposal.


Asunto(s)
Alimentos , Eliminación de Residuos , Anaerobiosis , Hidrólisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
18.
J Biol Chem ; 294(41): 15068-15081, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31431506

RESUMEN

Many fungi produce multiple lytic polysaccharide monooxygenases (LPMOs) with seemingly similar functions, but the biological reason for this multiplicity remains unknown. To address this question, here we carried out comparative structural and functional characterizations of three cellulose-active C4-oxidizing family AA9 LPMOs from the fungus Neurospora crassa, NcLPMO9A (NCU02240), NcLPMO9C (NCU02916), and NcLPMO9D (NCU01050). We solved the three-dimensional structure of copper-bound NcLPMO9A at 1.6-Å resolution and found that NcLPMO9A and NcLPMO9C, containing a CBM1 carbohydrate-binding module, bind cellulose more strongly and were less susceptible to inactivation than NcLPMO9D, which lacks a CBM. All three LPMOs were active on tamarind xyloglucan and konjac glucomannan, generating similar products but clearly differing in activity levels. Importantly, in some cases, the addition of phosphoric acid-swollen cellulose (PASC) had a major effect on activity: NcLPMO9A was active on xyloglucan only in the presence of PASC, and PASC enhanced NcLPMO9D activity on glucomannan. Interestingly, the three enzymes also exhibited large differences in their interactions with enzymatic electron donors, which could reflect that they are optimized to act with different reducing partners. All three enzymes efficiently used H2O2 as a cosubstrate, yielding product profiles identical to those obtained in O2-driven reactions with PASC, xyloglucan, or glucomannan. Our results indicate that seemingly similar LPMOs act preferentially on different types of copolymeric substructures in the plant cell wall, possibly because these LPMOs are functionally adapted to distinct niches differing in the types of available reductants.


Asunto(s)
Biomasa , Oxigenasas de Función Mixta/metabolismo , Neurospora crassa/enzimología , Plantas/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Celulosa/metabolismo , Transporte de Electrón , Peróxido de Hidrógeno/metabolismo , Oxigenasas de Función Mixta/química , Modelos Moleculares , Ácidos Fosfóricos/metabolismo , Conformación Proteica , Especificidad por Sustrato
19.
Water Res ; 158: 350-358, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31055015

RESUMEN

Efficient digestate dewatering is crucial to reduce the volume and transportation cost of solid residues from anaerobic digestion (AD) plants. Large variations in dewatered cake solids have been reported and predictive models are therefore important in design and operation of such plants. However, current predictive models lack validation across several digestion substrates, pre-treatments and full-scale plants. In this study, we showed that thermogravimetric analysis is a reliable prediction model for dewatered cake solids using digestates from 15 commercial full-scale plants. The tested digestates originated from different substrates, with and without the pre-AD thermal hydrolysis process (THP). Moreover, a novel combined physicochemical parameter (C/N•ash) characterizing different digestate blends was identified by multiplying the C/N ratio with ash content of the dried solids. Using samples from 22 full-scale wastewater, food waste and co-waste plants, a linear relationship was found between C/N•ash and predicted cake solids for digestates with and without pre-AD THP. Pre-AD THP improved predicted cake solids by increasing the amount of free water. However, solids characteristics like C/N ratio and ash content had a more profound influence on the predicted cake solids than pre-AD THP and type of dewatering device. Finally, C/N•ash was shown to have a linear relationship to cake solids and reported polymer dose from eight full-scale pre-AD THP plants. In conclusion, we identified the novel parameter C/N•ash which can be used to predict dewatered cake solids regardless of dewatering device and sludge origin.


Asunto(s)
Alimentos , Eliminación de Residuos , Anaerobiosis , Aguas del Alcantarillado , Aguas Residuales
20.
Nat Commun ; 10(1): 905, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30796211

RESUMEN

ß-Mannans are plant cell wall polysaccharides that are commonly found in human diets. However, a mechanistic understanding into the key populations that degrade this glycan is absent, especially for the dominant Firmicutes phylum. Here, we show that the prominent butyrate-producing Firmicute Roseburia intestinalis expresses two loci conferring metabolism of ß-mannans. We combine multi-"omic" analyses and detailed biochemical studies to comprehensively characterize loci-encoded proteins that are involved in ß-mannan capturing, importation, de-branching and degradation into monosaccharides. In mixed cultures, R. intestinalis shares the available ß-mannan with Bacteroides ovatus, demonstrating that the apparatus allows coexistence in a competitive environment. In murine experiments, ß-mannan selectively promotes beneficial gut bacteria, exemplified by increased R. intestinalis, and reduction of mucus-degraders. Our findings highlight that R. intestinalis is a primary degrader of this dietary fiber and that this metabolic capacity could be exploited to selectively promote key members of the healthy microbiota using ß-mannan-based therapeutic interventions.


Asunto(s)
Clostridiales/metabolismo , Carbohidratos de la Dieta/metabolismo , Mananos/metabolismo , Animales , Bacteroides/genética , Bacteroides/metabolismo , Clostridiales/enzimología , Clostridiales/genética , Dieta , Microbioma Gastrointestinal , Humanos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...