Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37656142

RESUMEN

It has long been an unresolved question whether the division machineries that assemble on the mitochondrial surface cooperate with factors inside the organelle. Now, two studies by Connor et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202303147) and Fukuda et al. (2023. Mol. Cell.https://doi.org/10.1016/j.molcel.2023.04.022) have identified an intermembrane space protein that is crucial for mitochondrial double membrane division.


Asunto(s)
Citocinesis , Mitocondrias , Dinámicas Mitocondriales , Membranas Mitocondriales
2.
PLoS Biol ; 21(9): e3002310, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37721958

RESUMEN

Decline of mitochondrial function is a hallmark of cellular aging. To counteract this process, some cells inherit mitochondria asymmetrically to rejuvenate daughter cells. The molecular mechanisms that control this process are poorly understood. Here, we made use of matrix-targeted D-amino acid oxidase (Su9-DAO) to selectively trigger oxidative damage in yeast mitochondria. We observed that dysfunctional mitochondria become fusion-incompetent and immotile. Lack of bud-directed movements is caused by defective recruitment of the myosin motor, Myo2. Intriguingly, intact mitochondria that are present in the same cell continue to move into the bud, establishing that quality control occurs directly at the level of the organelle in the mother. The selection of healthy organelles for inheritance no longer works in the absence of the mitochondrial Myo2 adapter protein Mmr1. Together, our data suggest a mechanism in which the combination of blocked fusion and loss of motor protein ensures that damaged mitochondria are retained in the mother cell to ensure rejuvenation of the bud.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , División Celular Asimétrica , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Miosinas/metabolismo , Proteínas Mitocondriales/metabolismo
3.
J Cell Sci ; 136(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37073556

RESUMEN

Mitochondria are essential organelles of eukaryotic cells and are characterized by their unique and complex membrane system. They are confined from the cytosol by an envelope consisting of two membranes. Signals, metabolites, proteins and lipids have to be transferred across these membranes via proteinaceous contact sites to keep mitochondria functional. In the present study, we identified a novel mitochondrial contact site in Saccharomyces cerevisiae that is formed by the inner membrane protein Cqd1 and the outer membrane proteins Por1 and Om14. Similar to what is found for the mitochondrial porin Por1, Cqd1 is highly conserved, suggesting that this complex is conserved in form and function from yeast to human. Cqd1 is a member of the UbiB protein kinase-like family (also called aarF domain-containing kinases). It was recently shown that Cqd1, in cooperation with Cqd2, controls the cellular distribution of coenzyme Q by a yet unknown mechanism. Our data suggest that Cqd1 is additionally involved in phospholipid homeostasis. Moreover, overexpression of CQD1 and CQD2 causes tethering of mitochondria to the endoplasmic reticulum, which might explain the ability of Cqd2 to rescue ERMES deletion phenotypes.


Asunto(s)
Mitocondrias , Proteínas de Saccharomyces cerevisiae , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
4.
Nat Cell Biol ; 24(4): 410-412, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418623
5.
Open Biol ; 11(12): 210238, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34847778

RESUMEN

Mitochondria are complex organelles with two membranes. Their architecture is determined by characteristic folds of the inner membrane, termed cristae. Recent studies in yeast and other organisms led to the identification of four major pathways that cooperate to shape cristae membranes. These include dimer formation of the mitochondrial ATP synthase, assembly of the mitochondrial contact site and cristae organizing system (MICOS), inner membrane remodelling by a dynamin-related GTPase (Mgm1/OPA1), and modulation of the mitochondrial lipid composition. In this review, we describe the function of the evolutionarily conserved machineries involved in mitochondrial cristae biogenesis with a focus on yeast and present current models to explain how their coordinated activities establish mitochondrial membrane architecture.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Humanos , Proteínas Mitocondriales/química , Biogénesis de Organelos , Multimerización de Proteína
6.
EMBO J ; 40(16): e107913, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34191328

RESUMEN

The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Línea Celular , Citosol/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Saccharomyces cerevisiae
7.
Microb Cell ; 7(9): 234-249, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32904421

RESUMEN

The production of metabolic energy in form of ATP by oxidative phosphorylation depends on the coordinated action of hundreds of nuclear-encoded mitochondrial proteins and a handful of proteins encoded by the mitochondrial genome (mtDNA). We used the yeast Saccharomyces cerevisiae as a model system to systematically identify the genes contributing to this process. Integration of genome-wide high-throughput growth assays with previously published large data sets allowed us to define with high confidence a set of 254 nuclear genes that are indispensable for respiratory growth. Next, we induced loss of mtDNA in the yeast deletion collection by growth on ethidium bromide-containing medium and identified twelve genes that are essential for viability in the absence of mtDNA (i.e. petite-negative). Replenishment of mtDNA by cytoduction showed that respiratory-deficient phenotypes are highly variable in many yeast mutants. Using a mitochondrial genome carrying a selectable marker, ARG8 m , we screened for mutants that are specifically defective in maintenance of mtDNA and mitochondrial protein synthesis. We found that up to 176 nuclear genes are required for expression of mitochondria-encoded proteins during fermentative growth. Taken together, our data provide a comprehensive picture of the molecular processes that are required for respiratory metabolism in a simple eukaryotic cell.

8.
Biol Chem ; 401(6-7): 779-791, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-31967958

RESUMEN

Mitochondria are essential organelles of virtually all eukaryotic organisms. As they cannot be made de novo, they have to be inherited during cell division. In this review, we provide an overview on mitochondrial inheritance in Saccharomyces cerevisiae, a powerful model organism to study asymmetric cell division. Several processes have to be coordinated during mitochondrial inheritance: mitochondrial transport along the actin cytoskeleton into the emerging bud is powered by a myosin motor protein; cell cortex anchors retain a critical fraction of mitochondria in the mother cell and bud to ensure proper partitioning; and the quantity of mitochondria inherited by the bud is controlled during cell cycle progression. Asymmetric division of yeast cells produces rejuvenated daughter cells and aging mother cells that die after a finite number of cell divisions. We highlight the critical role of mitochondria in this process and discuss how asymmetric mitochondrial partitioning and cellular aging are connected.


Asunto(s)
Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , División Celular Asimétrica , Saccharomyces cerevisiae/citología
9.
Microb Cell ; 5(4): 198-207, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29610761

RESUMEN

In aerobic organisms, mitochondrial F1Fo-ATP-synthase is the major site of ATP production. Beside this fundamental role, the protein complex is involved in shaping and maintenance of cristae. Previous electron microscopic studies identified the dissociation of F1Fo-ATP-synthase dimers and oligomers during organismic aging correlating with a massive remodeling of the mitochondrial inner membrane. Here we report results aimed to experimentally proof this impact and to obtain further insights into the control of these processes. We focused on the role of the two dimer assembly factors PaATPE and PaATPG of the aging model Podospora anserina. Ablation of either protein strongly affects mitochondrial function and leads to an accumulation of senescence markers demonstrating that the inhibition of dimer formation negatively influences vital functions and accelerates organismic aging. Our data validate a model that links mitochondrial membrane remodeling to aging and identify specific molecular components triggering this process.

11.
Mol Biol Cell ; 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28794267

RESUMEN

The yeast bc1 complex (complex III) and cytochrome oxidase (complex IV) are mosaics of core subunits encoded by the mitochondrial genome and additional nuclear-encoded proteins imported from the cytosol. Both complexes build in the mitochondrial inner membrane various supramolecular assemblies. The formation of the individual complexes and their supercomplexes depends on the activity of dedicated assembly factors. We identified a so far uncharacterized mitochondrial protein (open reading frame YDR381C-A) as an important assembly factor for complex III, complex IV, and their supercomplexes. Therefore, we named this protein Cox interacting (Coi) 1. Deletion of COI1 results in decreased respiratory growth, reduced membrane potential, and hampered respiration, as well as slow fermentative growth at low temperature. In addition, coi1Δ cells harbour reduced steady-state levels of subunits of complexes III and IV as well as of the assembled complexes and supercomplexes. Interaction of Coi1 with respiratory chain subunits seems transient, as it appears to be a stoichiometric subunit neither of complex III nor of complex IV. Collectively, this work identifies a novel protein that plays a role in the assembly of the mitochondrial respiratory chain.

12.
Dev Cell ; 42(1): 1-2, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28697329

RESUMEN

In this issue of Developmental Cell, Nguyen et al. (2017) show that lipid droplets serve a dual purpose during starvation. First, they act as an energy source by supplying fatty acids for mitochondrial ß oxidation. Second, they sequester toxic lipids that arise during autophagic degradation of membranous organelles, thereby protecting mitochondria.


Asunto(s)
Autofagia , Gotas Lipídicas , Ácidos Grasos , Lípidos , Mitocondrias
13.
J Cell Biol ; 216(8): 2481-2498, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28615194

RESUMEN

Partitioning of cell organelles and cytoplasmic components determines the fate of daughter cells upon asymmetric division. We studied the role of mitochondria in this process using budding yeast as a model. Anterograde mitochondrial transport is mediated by the myosin motor, Myo2. A genetic screen revealed an unexpected interaction of MYO2 and genes required for mitochondrial fusion. Genetic analyses, live-cell microscopy, and simulations in silico showed that fused mitochondria become critical for inheritance and transport across the bud neck in myo2 mutants. Similarly, fused mitochondria are essential for retention in the mother when bud-directed transport is enforced. Inheritance of a less than critical mitochondrial quantity causes a severe decline of replicative life span of daughter cells. Myo2-dependent mitochondrial distribution also is critical for the capture of heat stress-induced cytosolic protein aggregates and their retention in the mother cell. Together, these data suggest that coordination of mitochondrial transport, fusion, and fission is critical for asymmetric division and rejuvenation of daughter cells.


Asunto(s)
División Celular , ADN de Hongos/genética , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Agregado de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Simulación por Computador , Regulación Fúngica de la Expresión Génica , Genotipo , Microscopía por Video , Mitocondrias/genética , Mutación , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Fenotipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
14.
Methods Mol Biol ; 1567: 293-314, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28276026

RESUMEN

Budding yeast Saccharomyces cerevisiae represents a widely used model organism for the study of mitochondrial biogenesis and architecture. Electron microscopy is an essential tool in the analysis of cellular ultrastructure and the precise localization of proteins to organellar subcompartments. We provide here detailed protocols for the analysis of yeast mitochondria by transmission electron microscopy: (1) chemical fixation and Epon embedding of yeast cells and isolated mitochondria, and (2) cryosectioning and immunolabeling of yeast cells and isolated mitochondria according to the Tokuyasu method.


Asunto(s)
Microscopía Electrónica , Mitocondrias/ultraestructura , Levaduras/ultraestructura , Crioultramicrotomía/métodos , Microscopía Electrónica/métodos , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Orgánulos/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Flujo de Trabajo
15.
Trends Cell Biol ; 27(6): 441-452, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28291566

RESUMEN

Mitochondria are essential organelles because they have key roles in cellular energy metabolism and many other metabolic pathways. Several quality control systems have evolved to ensure that dysfunctional mitochondria are either repaired or eliminated. The activities of these pathways are crucial for cellular health because they maintain functional mitochondria. In addition, the cytosolic ubiquitin-proteasome system (UPS) and the mitochondria-associated degradation pathway (MAD) share some of their core components, are functionally tightly interconnected, and mutually modulate their activities. Thus, the mitochondrial outer membrane (MOM) actively supports quality control systems in extramitochondrial compartments. Furthermore, mitochondrial quality surveillance systems also act on cytosolic or endoplasmic reticulum (ER) substrates and modulate immune responses. Therefore, mitochondria contribute to cellular quality control and homeostasis on several levels.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Citosol/metabolismo , Humanos , Inmunidad , Mitofagia , Especies Reactivas de Oxígeno/metabolismo
16.
Elife ; 52016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27849155

RESUMEN

Metabolic function and architecture of mitochondria are intimately linked. More than 60 years ago, cristae were discovered as characteristic elements of mitochondria that harbor the protein complexes of oxidative phosphorylation, but how cristae are formed, remained an open question. Here we present experimental results obtained with yeast that support a novel hypothesis on the existence of two molecular pathways that lead to the generation of lamellar and tubular cristae. Formation of lamellar cristae depends on the mitochondrial fusion machinery through a pathway that is required also for homeostasis of mitochondria and mitochondrial DNA. Tubular cristae are formed via invaginations of the inner boundary membrane by a pathway independent of the fusion machinery. Dimerization of the F1FO-ATP synthase and the presence of the MICOS complex are necessary for both pathways. The proposed hypothesis is suggested to apply also to higher eukaryotes, since the key components are conserved in structure and function throughout evolution.


Asunto(s)
GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Expresión Génica , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Biogénesis de Organelos , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
EMBO Rep ; 17(7): 965-81, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27226123

RESUMEN

Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER-mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES-related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane.


Asunto(s)
Proteínas Fúngicas/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Péptido Hidrolasas/metabolismo , Transducción de Señal , Proteínas Portadoras/metabolismo , Proteínas Fúngicas/genética , Eliminación de Gen , Dosificación de Gen , Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Complejos Multiproteicos , Transporte de Proteínas , Proteolisis
18.
Sci Rep ; 5: 18344, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26669658

RESUMEN

Membrane homeostasis affects mitochondrial dynamics, morphology, and function. Here we report genetic and proteomic data that reveal multiple interactions of Mdm33, a protein essential for normal mitochondrial structure, with components of phospholipid metabolism and mitochondrial inner membrane homeostasis. We screened for suppressors of MDM33 overexpression-induced growth arrest and isolated binding partners by immunoprecipitation of cross-linked cell extracts. These approaches revealed genetic and proteomic interactions of Mdm33 with prohibitins, Phb1 and Phb2, which are key components of mitochondrial inner membrane homeostasis. Lipid profiling by mass spectrometry of mitochondria isolated from Mdm33-overexpressing cells revealed that high levels of Mdm33 affect the levels of phosphatidylethanolamine and cardiolipin, the two key inner membrane phospholipids. Furthermore, we show that cells lacking Mdm33 show strongly decreased mitochondrial fission activity indicating that Mdm33 is critical for mitochondrial membrane dynamics. Our data suggest that MDM33 functionally interacts with components important for inner membrane homeostasis and thereby supports mitochondrial division.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Biogénesis de Organelos , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Prohibitinas , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Curr Opin Cell Biol ; 35: 1-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25801776

RESUMEN

Mitochondria are dynamic organelles that are highly motile and frequently fuse and divide. It has recently become clear that their complex behavior is governed to a large extent by interactions with other cellular structures. This review will focus on a mitochondria-plasma membrane tethering complex that was recently discovered and molecularly analyzed in budding yeast, the Num1/Mdm36 complex. This complex attaches mitochondria to the cell cortex and ensures that a portion of the organelles is retained in mother cells during cell division. At the same time, it supports mitochondrial division and integrates mitochondrial dynamics into cellular architecture. Recent evidence suggests that similar mechanisms might exist also in mammalian cells.


Asunto(s)
Membrana Celular/metabolismo , Mitocondrias/metabolismo , Animales , División Celular , Citoplasma/genética , Dinámicas Mitocondriales , Unión Proteica
20.
EMBO J ; 33(22): 2659-75, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25190516

RESUMEN

The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER-mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Factor 1 de Ribosilacion-ADP/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA