Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Opt Express ; 11(6): 3246-3262, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32637252

RESUMEN

As a leading cause of death in women, breast cancer is a global health concern for which personalized therapy remains largely unrealized, resulting in over- or under-treatment. Recently, tumor stroma has been shown to carry important prognostic information, both in its relative abundance and morphology, but its current assessment methods are few and suboptimal. Herein, we present a novel stromal architecture signature (SAS) methodology based on polarized light imaging that quantifies patterns of tumor connective tissue. We demonstrate its ability to differentiate between myxoid and sclerotic stroma, two pathology-derived categories associated with significantly different patient outcomes. The results demonstrate a 97% sensitivity and 88% specificity for myxoid stroma identification in a pilot study of 102 regions of interest from human invasive ductal carcinoma breast cancer surgical specimens (20 patients). Additionally, the SAS numerical score is indicative of the wide range of stromal characteristics within these binary classes and highlights ambiguous mixed-morphology regions prone to misclassification. The enabling polarized light microscopy technique is inexpensive, fast, fully automatable, applicable to fresh or embedded tissue without the need for staining and thus potentially translatable into research and/or clinical settings. The SAS metric yields quantifiable and objective stromal characterization with promise for prognosis in many types of cancers beyond breast carcinoma, enabling researchers and clinicians to further investigate the emerging and important role of stromal architectural patterns in solid tumors.

3.
Biomed Opt Express ; 10(8): 3963-3973, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31452988

RESUMEN

The amount and organization details of peri-tumoural stroma have been linked to patient outcomes in various cancers. In this study, we propose a novel and relatively simple methodology using polarized light microscopy (PLM) to image fibrillar structures within a tumour microenvironment, using only linear crossed polarizers. We demonstrate the technique's ability to image and extract measurement-geometry-independent quantitative morphological metrics related to stromal density and alignment in human invasive breast cancer samples. The findings are promising towards quantitative characterization of peri-tumoural stroma, with potential to develop a PLM signature of tumour microenvironment for providing clinically important information such as breast cancer behaviour or treatment outcome prognosis.

4.
Biomed Eng Lett ; 9(3): 339-349, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31456893

RESUMEN

Mueller polarimetry is a quantitative polarized light imaging modality that is capable of label-free visualization of tissue pathology, does not require extensive sample preparation, and is suitable for wide-field tissue analysis. It holds promise for selected applications in biomedicine, but polarimetry systems are often constrained by limited end-user accessibility and/or long-imaging times. In order to address these needs, we designed a multiscale-polarimetry module that easily couples to a commercially available stereo zoom microscope. This paper describes the module design and provides initial polarimetry imaging results from a murine preclinical breast cancer model and human breast cancer samples. The resultant polarimetry module has variable resolution and field of view, is low-cost, and is simple to switch in or out of a commercial microscope. The module can reduce long imaging times by adopting the main imaging approach used in pathology: scanning at low resolution to identify regions of interest, then at high resolution to inspect the regions in detail. Preliminary results show how the system can aid in region of interest identification for pathology, but also highlight that more work is needed to understand how tissue structures of pathological interest appear in Mueller polarimetry images across varying spatial zoom scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...