Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 224(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37098137

RESUMEN

Sturge-Weber Syndrome (SWS) is a sporadic (non-inherited) syndrome characterized by capillary vascular malformations in the facial skin, leptomeninges, or the choroid. A hallmark feature is the mosaic nature of the phenotype. SWS is caused by a somatic mosaic mutation in the GNAQ gene (p.R183Q), leading to activation of the G protein, Gαq. Decades ago, Rudolf Happle hypothesized SWS as an example of "paradominant inheritance", that is, a "lethal gene (mutation) surviving by mosaicism". He predicted that the "presence of the mutation in the zygote will lead to death of the embryo at an early stage of development". We have created a mouse model for SWS using gene targeting to conditionally express the GNAQ p.R183Q mutation. We have employed two different Cre-drivers to examine the phenotypic effects of expression of this mutation at different levels and stages of development. As predicted by Happle, global, ubiquitous expression of this mutation in the blastocyst stage results in 100% embryonic death. The majority of these developing embryos show vascular defects consistent with the human vascular phenotype. By contrast, global but mosaic expression of the mutation enables a fraction of the embryos to survive, but those that survive to birth and beyond do not exhibit obvious vascular defects. These data validate Happle's paradominant inheritance hypothesis for SWS and suggest the requirement of a tight temporal and developmental window of mutation expression for the generation of the vascular phenotype. Furthermore, these engineered murine alleles provide the template for the development of a mouse model of SWS that acquires the somatic mutation during embryonic development, but permits the embryo to progress to live birth and beyond, so that postnatal phenotypes can also be investigated. These mice could then also be employed in pre-clinical studies of novel therapies.


Asunto(s)
Síndrome de Sturge-Weber , Malformaciones Vasculares , Animales , Humanos , Masculino , Ratones , Capilares/metabolismo , Mutación , Síndrome de Sturge-Weber/genética , Síndrome de Sturge-Weber/metabolismo , Síndrome de Sturge-Weber/terapia , Malformaciones Vasculares/genética
2.
Orphanet J Rare Dis ; 16(1): 372, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34479577

RESUMEN

BACKGROUND: Vascular malformations in the central nervous system are difficult to monitor and treat due to their inaccessible location. Angiogenic and inflammatory proteins are secreted into the bloodstream and may serve as useful biomarkers for identifying patients at risk for complications or with certain disease phenotypes. METHODS: A validated multiplex protein array consisting of 26 angiogenic and inflammatory biomarkers (Angiome) was assessed in plasma isolated from healthy controls and patients with either sporadic brain arteriovenous malformation (BAVM), familial cerebral cavernous malformation (CCM), or hereditary hemorrhagic telangiectasia (HHT). These samples were obtained from archives of ongoing research studies at the University of California San Francisco and through prospective collection at the Toronto HHT Centre at St. Michael's Hospital. RESULTS: We compared circulating biomarker levels from each patient group to healthy controls and analyzed each pairwise combination of patient groups for differences in biomarker levels. Additionally, we analyzed the HHT samples to determine the association between biomarker levels and the following HHT-specific phenotypes, BAVM, pulmonary arteriovenous malformation (PAVM), liver vascular malformation (LVM), and gastrointestinal (GI) bleeding. Compared to controls, levels of SDF1 were significantly elevated in HHT patients (Proportional Increase [PI] = 1.87, p < 0.001, q = 0.011). Levels of sENG were significantly reduced in HHT patients compared to controls (PI = 0.56, p < 0.001, q < 0.001), reflecting the prevalence of HHT1 patients in this cohort. Levels of IL6 (PI = 3.22, p < 0.001, q < 0.001) and sTGFßR3 (PI = 0.70, p = 0.001, q < 0.029) differed significantly in CCM patients compared to controls. Compared to controls, ten of the biomarkers were significantly different in sporadic BAVM patients (q-values < 0.05). Among the pairwise combinations of patient groups, a significant elevation was observed in TGFß1 in CCM patients compared to sporadic BAVM patients (PI = 2.30, p < 0.001, q = 0.034). When examining the association of circulating biomarker levels with HHT-specific phenotypes, four markers were significantly lower in HHT patients with BAVM (q-values < 0.05), and four markers were significantly higher in patients with LVM (q-values < 0.05). CONCLUSIONS: This pilot study suggests that the profile of circulating angiogenic and inflammatory biomarkers may be unique to each type of vascular malformation. Furthermore, this study indicates that circulating biomarkers may be useful for assessing phenotypic traits of vascular malformations.


Asunto(s)
Malformaciones Arteriovenosas Intracraneales , Telangiectasia Hemorrágica Hereditaria , Malformaciones Vasculares , Biomarcadores , Humanos , Proyectos Piloto , Estudios Prospectivos
3.
Front Neurosci ; 15: 705160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408625

RESUMEN

Although studies with inbred strains of mice have shown that infarct size is largely determined by the extent of collateral vessel connections between arteries in the brain that enable reperfusion of the ischemic territory, we have identified strain pairs that do not vary in this vascular phenotype, but which nonetheless exhibit large differences in infarct size. In this study we performed quantitative trait locus (QTL) mapping in mice from an intercross between two such strains, WSB/EiJ (WSB) and C57BL/6J (B6). This QTL mapping revealed only one neuroprotective locus on Chromosome 8 (Chr 8) that co-localizes with a neuroprotective locus we mapped previously from F2 progeny between C3H/HeJ (C3H) and B6. The allele-specific phenotypic effect on infarct volume at the genetic region identified by these two independent mappings was in the opposite direction of the parental strain phenotype; namely, the B6 allele conferred increased susceptibility to ischemic infarction. Through two reciprocal congenic mouse lines with either the C3H or B6 background at the Chr 8 locus, we verified the neuroprotective effects of this genetic region that modulates infarct volume without any effect on the collateral vasculature. Additionally, we surveyed non-synonymous coding SNPs and performed RNA-sequencing analysis to identify potential candidate genes within the genetic interval. Through these approaches, we suggest new genes for future mechanistic studies of infarction following ischemic stroke, which may represent novel gene/protein targets for therapeutic development.

4.
J Pathol ; 241(2): 281-293, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27859310

RESUMEN

Vascular malformations may arise in any of the vascular beds present in the human body. These lesions vary in location, type, and clinical severity of the phenotype. In recent years, the genetic basis of several vascular malformations has been elucidated. This review will consider how the identification of the genetic factors contributing to different vascular malformations, with subsequent functional studies in animal models, has provided a better understanding of these factors that maintain vascular integrity in vascular beds, as well as their role in the pathogenesis of vascular malformations. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Células Endoteliales/metabolismo , Predisposición Genética a la Enfermedad , Organismos Modificados Genéticamente , Factor de Crecimiento Transformador beta2/metabolismo , Malformaciones Vasculares/patología , Malformaciones Vasculares/fisiopatología , Animales , Humanos , Modelos Animales
5.
Hypertension ; 68(3): 667-77, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402918

RESUMEN

RAMPs (receptor activity-modifying proteins) serve as oligomeric modulators for numerous G-protein-coupled receptors, yet elucidating the physiological relevance of these interactions remains complex. Ramp2 null mice are embryonic lethal, with cardiovascular developmental defects similar to those observed in mice null for canonical adrenomedullin/calcitonin receptor-like receptor signaling. We aimed to genetically rescue the Ramp2(-/-) lethality in order to further delineate the spatiotemporal requirements for RAMP2 function during development and thereby enable the elucidation of an expanded repertoire of RAMP2 functions with family B G-protein-coupled receptors in adult homeostasis. Endothelial-specific expression of Ramp2 under the VE-cadherin promoter resulted in the partial rescue of Ramp2(-/-) mice, demonstrating that endothelial expression of Ramp2 is necessary and sufficient for survival. The surviving Ramp2(-/-) Tg animals lived to adulthood and developed spontaneous hypotension and dilated cardiomyopathy, which was not observed in adult mice lacking calcitonin receptor-like receptor. Yet, the hearts of Ramp2(-/-) Tg animals displayed dysregulation of family B G-protein-coupled receptors, including parathyroid hormone and glucagon receptors, as well as their downstream signaling pathways. These data suggest a functional requirement for RAMP2 in the modulation of additional G-protein-coupled receptor pathways in vivo, which is critical for sustained cardiovascular homeostasis. The cardiovascular importance of RAMP2 extends beyond the endothelium and canonical adrenomedullin/calcitonin receptor-like receptor signaling, in which future studies could elucidate novel and pharmacologically tractable pathways for treating cardiovascular diseases.


Asunto(s)
Cardiomiopatía Dilatada/mortalidad , Cardiomiopatía Dilatada/patología , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo , Análisis de Varianza , Animales , Cardiomiopatía Dilatada/genética , Modelos Animales de Enfermedad , Homeostasis/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/metabolismo , Distribución Aleatoria , Receptores de Adrenomedulina/genética , Transducción de Señal , Estadísticas no Paramétricas , Sobrevivientes
6.
Am J Physiol Regul Integr Comp Physiol ; 310(2): R209-16, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26582637

RESUMEN

Estrogen regulates the expression of many genes and has been correlated with differences in cardiac contraction; however, the underlying mechanisms remain poorly defined. Adrenomedullin (Adm = gene; AM = protein) is a multifunctional peptide with inotropic actions. Previous studies have demonstrated that estrogen enhances the expression of Adm, suggesting a relationship between AM and estrogen in cardiac contraction during physiological and pathological states. In this study, female mice in a mouse model of genetic Adm overexpression, abbreviated as Adm(hi/hi), were found to express 60 times more Adm in the heart than wild-type littermates, compared with the three-fold elevation of Adm previously reported in Adm(hi/hi) male hearts. Thus, this study sought to further investigate any functional consequences of increased cardiac Adm expression and begin exploring the mechanisms that regulate Adm expression in an estrogen-dependent fashion. This study revealed that heart function is enhanced in Adm(hi/hi) females, which along with Adm expression levels, was reversed following ovariectomization. Since the Adm(hi/hi) line was generated by the displacement of the 3' untranslated region (UTR), the native 3'UTR was examined for estrogen-induced microRNAs target sites to potentially explain the aberrant overexpression observed in Adm(hi/hi) female hearts. Using a bioinformatic approach, it was determined that the mouse Adm 3'UTR contains many target sites for previously characterized estrogen-induced microRNAs. This study also determined that the novel microRNA, miR-879, is another estrogen-induced microRNA that interacts with the 3'UTR of Adm to destabilize the mRNA. Together, these studies revealed that estrogen-induced microRNAs are important for balancing cardiac Adm expression in females.


Asunto(s)
Adrenomedulina/metabolismo , Estrógenos/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Adrenomedulina/genética , Animales , Sitios de Unión , Biología Computacional , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Genotipo , Hormona del Crecimiento/genética , Hemodinámica , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Contracción Miocárdica , Ovariectomía , Fenotipo , Transducción de Señal , Regulación hacia Arriba , Función Ventricular Izquierda
7.
PLoS One ; 9(7): e102356, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25010197

RESUMEN

Asthma is a chronic inflammatory disease affecting the lung, characterized by breathing difficulty during an attack following exposure to an environmental trigger. Calcitonin gene-related peptide (CGRP) is a neuropeptide that may have a pathological role in asthma. The CGRP receptor is comprised of two components, which include the G-protein coupled receptor, calcitonin receptor-like receptor (CLR), and receptor activity-modifying protein 1 (RAMP1). RAMPs, including RAMP1, mediate ligand specificity in addition to aiding in the localization of receptors to the cell surface. Since there has been some controversy regarding the effect of CGRP on asthma, we sought to determine the effect of CGRP signaling ablation in an animal model of asthma. Using gene-targeting techniques, we generated mice deficient for RAMP1 by excising exon 3. After determining that these mice are viable and overtly normal, we sensitized the animals to ovalbumin prior to assessing airway resistance and inflammation after methacholine challenge. We found that mice lacking RAMP1 had reduced airway resistance and inflammation compared to wildtype animals. Additionally, we found that a 50% reduction of CLR, the G-protein receptor component of the CGRP receptor, also ameliorated airway resistance and inflammation in this model of allergic asthma. Interestingly, the loss of CLR from the smooth muscle cells did not alter the airway resistance, indicating that CGRP does not act directly on the smooth muscle cells to drive airway hyperresponsiveness. Together, these data indicate that signaling through RAMP1 and CLR plays a role in mediating asthma pathology. Since RAMP1 and CLR interact to form a receptor for CGRP, our data indicate that aberrant CGRP signaling, perhaps on lung endothelial and inflammatory cells, contributes to asthma pathophysiology. Finally, since RAMP-receptor interfaces are pharmacologically tractable, it may be possible to develop compounds targeting the RAMP1/CLR interface to assist in the treatment of asthma.


Asunto(s)
Asma/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteína Similar al Receptor de Calcitonina/genética , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Animales , Asma/patología , Péptido Relacionado con Gen de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Pulmón/metabolismo , Pulmón/patología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Proteína 1 Modificadora de la Actividad de Receptores/genética , Transducción de Señal/genética
8.
Dev Dyn ; 243(2): 243-56, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24123312

RESUMEN

BACKGROUND: Growth promoting signals from the epicardium are essential for driving myocardial proliferation during embryogenesis. In adults, these signals become reactivated following injury and promote angiogenesis and myocardial repair. Therefore, identification of such paracrine factors could lead to novel therapeutic strategies. The multi-functional peptide adrenomedullin (Adm 5 gene, AM 5 protein) is required for normal heart development. Moreover, elevated plasma AM following myocardial infarction offers beneficial cardioprotection and serves as a powerful diagnostic and prognostic indication of disease severity. RESULTS: Here, we developed a new model of Adm overexpression by stabilizing the Adm mRNA through gene-targeted replacement of the endogenous 30 untranslated region. As expected, Admhi/hi mice express three-times more AM than controls in multiple tissues, including the heart. Despite normal blood pressures, Admhi/hi mice unexpectedly showed significantly enlarged hearts due to increased cardiac hyperplasia during development. The targeting vector was designed to allow for reversion to wild-type levels by means of Cre-mediated modification. Using this approach, we demonstrate that AM derived from the epicardium, but not the myocardium or cardiac fibroblast, is responsible for driving cardiomyocyte hyperplasia. CONCLUSIONS: AM is produced by the epicardium and drives myocyte proliferation during development, thus representing a novel and clinically relevant factor potentially related to mechanisms of cardiac repair after injury.


Asunto(s)
Adrenomedulina/metabolismo , Corazón/embriología , Miocardio/patología , Pericardio/metabolismo , Estabilidad del ARN/genética , Transducción de Señal/fisiología , Adrenomedulina/genética , Animales , Western Blotting , Bromodesoxiuridina , Ciclo Celular/fisiología , Cartilla de ADN/genética , Vectores Genéticos/genética , Hiperplasia/genética , Hiperplasia/metabolismo , Ratones , Ratones Mutantes , Miocitos Cardíacos/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...