Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cardiovasc Res ; 119(11): 2033-2045, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37161473

RESUMEN

Monocytes circulate the vasculature at steady state and are recruited to sites of inflammation where they differentiate into macrophages (MФ) to replenish tissue-resident MФ populations and engage in the development of cardiovascular disease (CVD). Monocytes display considerable heterogeneity, currently reflected by a nomenclature based on their expression of cluster of differentiation (CD) 14 and CD16, distinguishing CD14++CD16- classical (cMo), CD14++CD16+ intermediate (intMo) and CD14+CD16++ non-classical (ncMo) monocytes. Several reports point to shifted subset distributions in the context of CVD, with significant association of intMo numbers with atherosclerosis, myocardial infarction, and heart failure. However, clear indications of their causal involvement as well as their predictive value for CVD are lacking. As recent high-parameter cytometry and single-cell RNA sequencing (scRNA-Seq) studies suggest an even higher degree of heterogeneity, better understanding of the functionalities of these subsets is pivotal. Considering their high heterogeneity, surprisingly little is known about functional differences between MФ originating from monocytes belonging to different subsets, and implications thereof for CVD pathogenesis. This paper provides an overview of recent findings on monocyte heterogeneity in the context of homeostasis and disease as well as functional differences between the subsets and their potential to differentiate into MФ, focusing on their role in vessels and the heart. The emerging paradigm of monocyte heterogeneity transcending the current tripartite subset division argues for an updated nomenclature and functional studies to substantiate marker-based subdivision and to clarify subset-specific implications for CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Infarto del Miocardio , Humanos , Monocitos/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Macrófagos/metabolismo , Aterosclerosis/metabolismo , Infarto del Miocardio/metabolismo , Receptores de IgG/metabolismo , Receptores de Lipopolisacáridos
2.
Proc Natl Acad Sci U S A ; 119(12): e2114739119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35302892

RESUMEN

In response to inflammatory activation by pathogens, macrophages accumulate triglycerides in intracellular lipid droplets. The mechanisms underlying triglyceride accumulation and its exact role in the inflammatory response of macrophages are not fully understood. Here, we aim to further elucidate the mechanism and function of triglyceride accumulation in the inflammatory response of activated macrophages. Lipopolysaccharide (LPS)-mediated activation markedly increased triglyceride accumulation in macrophages. This increase could be attributed to up-regulation of the hypoxia-inducible lipid droplet­associated (HILPDA) protein, which down-regulated adipose triglyceride lipase (ATGL) protein levels, in turn leading to decreased ATGL-mediated triglyceride hydrolysis. The reduction in ATGL-mediated lipolysis attenuated the inflammatory response in macrophages after ex vivo and in vitro activation, and was accompanied by decreased production of prostaglandin-E2 (PGE2) and interleukin-6 (IL-6). Overall, we provide evidence that LPS-mediated activation of macrophages suppresses lipolysis via induction of HILPDA, thereby reducing the availability of proinflammatory lipid precursors and suppressing the production of PGE2 and IL-6.


Asunto(s)
Gotas Lipídicas , Metabolismo de los Lípidos , Humanos , Inflamación/metabolismo , Gotas Lipídicas/metabolismo , Lípidos , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Triglicéridos/metabolismo
3.
Lancet Gastroenterol Hepatol ; 6(10): 784-792, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34358486

RESUMEN

BACKGROUND: Current treatments for functional dyspepsia have limited efficacy or present safety issues. We aimed to assess spore-forming probiotics in functional dyspepsia as monotherapy or add-on therapy to long-term treatment with proton-pump inhibitors. METHODS: In this single-centre, randomised, double-blind, placebo-controlled pilot trial that took place at University Hospitals Leuven (Leuven, Belgium), adult patients (≥18 years) with functional dyspepsia (as defined by Rome IV criteria, on proton-pump inhibitors or off proton-pump inhibitors) were randomly assigned (1:1) via computer-generated blocked lists, stratified by proton-pump inhibitor status, to receive 8 weeks of treatment with probiotics (Bacillus coagulans MY01 and Bacillus subtilis MY02, 2·5 × 109 colony-forming units per capsule) or placebo consumed twice per day, followed by an open-label extension phase of 8 weeks. Individuals with a history of abdominal surgery, diabetes, coeliac or inflammatory bowel disease, active psychiatric conditions, and use of immunosuppressant drugs, antibiotics, or probiotics in the past 3 months were excluded. All patients and on-site study personnel were masked to treatment allocation in the first 8 weeks. Symptoms, immune activation, and faecal microbiota were assessed and recorded. The primary endpoint was a decrease of at least 0·7 in the postprandial distress syndrome (PDS) score of the Leuven Postprandial Distress Scale in patients with a baseline PDS score of 1 or greater (at least mild symptoms), assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT04030780. FINDINGS: Between June 3, 2019, and March 11, 2020, of 93 individuals assessed for eligibility, we included 68 patients with functional dyspepsia (51 [75%] women, mean age 40·1 years [SD 14·4], 34 [50%] on proton-pump inhibitors). We randomly assigned 32 participants to probiotics and 36 to placebo. The proportion of clinical responders was higher with probiotics (12 [48%] of 25) than placebo (six [20%] of 30; relative risk 1·95 [95% CI 1·07-4·11]; p=0·028). The number of patients with adverse events was similar with probiotics (five [16%] of 32) and placebo (12 [33%] of 36). Two serious adverse events occurring during the open-label phase (appendicitis and syncope in two separate patients) were assessed as unlikely to be related to the study product. INTERPRETATION: In this exploratory study, B coagulans MY01 and B subtilis MY02 were efficacious and safe in the treatment of functional dyspepsia. Participants had potentially beneficial immune and microbial changes, which could provide insights into possible underlying mechanisms as future predictors or treatment targets. FUNDING: MY HEALTH.


Asunto(s)
Suplementos Dietéticos/efectos adversos , Dispepsia/dietoterapia , Dispepsia/fisiopatología , Probióticos/uso terapéutico , Adulto , Bacillus coagulans , Bacillus subtilis , Bélgica/epidemiología , Estudios de Casos y Controles , Método Doble Ciego , Dispepsia/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Placebos/administración & dosificación , Prevalencia , Probióticos/administración & dosificación , Probióticos/efectos adversos , Inhibidores de la Bomba de Protones/uso terapéutico , Seguridad , Esporas/química , Resultado del Tratamiento
4.
Food Res Int ; 147: 110547, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34399524

RESUMEN

SCOPE: Dietary advanced glycation endproducts (AGEs) are associated with negative biological effects, possibly due to accumulation in plasma and tissues and through modulation of inflammation and gut microbiota. Whether these biological consequences are reversible by limiting dietary AGE intake is unknown. METHODS AND RESULTS: Young healthy C57BL/6 mice were fed a standard chow (n = 10) or a baked chow high AGE-diet (n = 10) (~1.8-6.9 fold increased protein-bound Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1)) for 10 weeks or a switch diet with baked chow for 5 weeks followed by 5 weeks of standard chow (n = 10). We assessed accumulation of AGEs in plasma, kidney, and liver and measured inflammatory markers and gut microbial composition. After 10 weeks of baked chow, a substantial panel of AGEs were increased in plasma, liver, and kidney. These increases were normalized after the switch diet. The inflammatory z-score increased after the baked chow diet. Gut microbial composition differed significantly between groups, with enriched Dubosiella spp. dominating these alterations. CONCLUSION: A high AGE-diet led to an increase of AGEs in plasma, kidney, and liver and to more inflammation and modification of the gut microbiota. These effects were reversed or discontinued by a diet lower in AGEs.


Asunto(s)
Microbioma Gastrointestinal , Productos Finales de Glicación Avanzada , Animales , Dieta , Inflamación , Ratones , Ratones Endogámicos C57BL
5.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297574

RESUMEN

Macrophages play a crucial role during the pathogenesis of multiple sclerosis (MS), a neuroinflammatory autoimmune disorder of the central nervous system. Important regulators of the metabolic and inflammatory phenotype of macrophages are liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs). Previously, it has been reported that PPARγ expression is decreased in peripheral blood mononuclear cells of MS patients. The goal of the present study was to determine to what extent PPARγ, as well as the closely related nuclear receptors PPARα and ß and LXRα and ß, are differentially expressed in monocytes from MS patients and how this change in expression affects the function of monocyte-derived macrophages. We demonstrate that monocytes of relapsing-remitting MS patients display a marked decrease in PPARγ expression, while the expression of PPARα and LXRα/ß is not altered. Interestingly, exposure of monocyte-derived macrophages from healthy donors to MS-associated proinflammatory cytokines mimicked this reduction in PPARγ expression. While a reduced PPARγ expression did not affect the inflammatory and phagocytic properties of myelin-loaded macrophages, it did impact myelin processing by increasing the intracellular cholesterol load of myelin-phagocytosing macrophages. Collectively, our findings indicate that an inflammation-induced reduction in PPARγ expression promotes myelin-induced foam cell formation in macrophages in MS.


Asunto(s)
Células Espumosas/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , PPAR gamma/metabolismo , Células Cultivadas , Humanos , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/patología , Vaina de Mielina/metabolismo , PPAR gamma/genética
7.
Ther Adv Med Oncol ; 12: 1758835920975621, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33403016

RESUMEN

BACKGROUND: Merkel cell carcinoma (MCC) is a highly malignant skin cancer. Despite major treatment improvements during the last decade, up to 50% of patients do not respond to therapy or develop recurrent disease. For these patients, alternative treatment options are urgently needed. Here, we assessed the efficacy of the combination of the BCL-2 inhibitor Navitoclax and the PI3K p110α inhibitor Alpelisib in MCC cell lines. METHODS: The expression of BCL-2 was assessed by immunohistochemistry in MCC and MCC cell lines. Treatment with Navitoclax and Alpelisib alone and in combination was performed on four MCC cell lines. The decrease of cell viability during treatment was assessed by XTT assay and visualized for the combinations by 3D combinatorial index plotting. The increase of apoptotic cells was determined by cleaved PARP Western blotting and Annexin V staining. RESULTS: Some 94% of MCCs and all three MCPyV-positive cell lines showed BCL-2 expression. Navitoclax monotreatment was shown to be highly effective when treating BCL-2-positive cell lines (IC50-values ranging from 96.0 to 323.0 nM). The combination of Alpelisib and Navitoclax resulted in even stronger synergistic and prolonged inhibitions of MCC cell viability through apoptosis up to 4 days. DISCUSSION: Our results show that the anti-apoptotic BCL-2 is frequently expressed in MCC and MCC cell lines. Inhibition of BCL-2 by Navitoclax in combination with Alpelisib revealed a strong synergy and prolonged inhibition of MCC cell viability and induction of apoptosis. The combination of Navitoclax and Alpelisib is a novel potential treatment option for MCC patients.

8.
Immunometabolism ; 2(2): e200015, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-34987865

RESUMEN

BACKGROUND: The prevalence of obesity is rising and leads to increased morbidity and mortality. Adipose tissue inflammation, due to accumulation and activation of adipose tissue macrophages (ATMs), is a key driver of this phenomenon. Macrophages are heterogeneous cells, adapting quickly to the microenvironment, resulting in so-called M1 or M2 macrophages. In this study, we describe the dynamics and inflammatory properties of a newly identified ATM subset in obese mice. METHODS: LDLR-/- mice received a high fat diet (HFD) for 5 weeks or 16 weeks to induce obesity. Adipose tissues were isolated and immune cell subsets were analyzed with flow cytometry or microarray analysis. Bone marrow transplantation (BMT) using CD45.1 and CD45.2 LDLR-/- mice was performed to determine ATM origin. RESULTS: Upon HFD, there is a massive increase of ATM subsets in the adipose tissue. CD11c-M2 ATMs could be subdivided based on their MHC2 expression into CD11c-MHC2high ATMs and previously unidentified CD11c-MHC2low ATMs. CD11c-MHC2low ATMs accumulated very rapidly after 10 days of HFD, after which they increased even further with prolonged HFD. Microarray data showed that CD11c-MHC2low ATMs resembled CD11c-MHC2high ATMs in the steady state, but became more inflammatory during development of obesity. In vitro stimulation of bone marrow-derived macrophages with palmitate, abundantly present in HFD, resulted in the induction of the CD11c-MHC2low phenotype. CONCLUSIONS: Among M2 macrophages, a novel pro-inflammatory subset of macrophages was found based on their low level of MHC2 expression. This subset may play a role in the development of adipose tissue inflammation.

9.
Front Immunol ; 10: 855, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31068938

RESUMEN

Multiple sclerosis (MS) is a demyelinating autoimmune disease in which innate and adaptive immune cells infiltrate the central nervous system (CNS) and damage the myelin sheaths surrounding the axons. Upon activation, infiltrated macrophages, CNS-resident microglia, and astrocytes switch their metabolism toward glycolysis, resulting in the formation of α-dicarbonyls, such as methylglyoxal (MGO) and glyoxal (GO). These potent glycating agents lead to the formation of advanced glycation endproducts (AGEs) after reaction with amino acids. We hypothesize that AGE levels are increased in MS lesions due to the inflammatory activation of macrophages and astrocytes. First, we measured tissue levels of AGEs in brain samples of MS patients and controls. Analysis of MS patient and non-demented control (NDC) specimens showed a significant increase in protein-bound Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1), the major AGE, compared to white matter of NDCs (107 ± 11 vs. 154 ± 21, p < 0.05). In addition, immunohistochemistry revealed that MGO-derived AGEs were specifically present in astrocytes, whereas the receptor for AGEs, RAGE, was detected on microglia/macrophages. Moreover, in cerebrospinal fluid from MS patients, α-dicarbonyls and free AGEs correlated with their respective levels in the plasma, whereas this was not observed for protein-bound AGEs. Taken together, our data show that MG-H1 is produced by astrocytes. This suggests that AGEs secreted by astrocytes have paracrine effects on RAGE-positive macrophages/microglia and thereby contribute to the pathology of MS.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Piruvaldehído/metabolismo , Anciano , Astrocitos/metabolismo , Astrocitos/patología , Biomarcadores , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Productos Finales de Glicación Avanzada/sangre , Humanos , Inmunohistoquímica , Masculino , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/patología
10.
Sci Rep ; 8(1): 15256, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30323247

RESUMEN

Non-alcoholic fatty liver disease is a spectrum of liver diseases ranging from steatosis only to non-alcoholic steatohepatitis (NASH). The latter is characterized by hepatic inflammation, which increases the risk of cardiovascular disease. It is poorly understood which factors contribute to the onset of hepatic inflammation characterizing the progression from steatosis to NASH. Previously, we demonstrated increased advanced glycation endproducts (AGEs) in the livers of NASH patients. We hypothesise that AGEs play a key role in NASH development by activating their proinflammatory receptor, RAGE. RAGE-deficient mice and wildtype littermates, both on Ldlr-/- background, were fed a Western type diet (WTD) for 3 or 12 weeks. Flow cytometry, histology, gene expression and AGE measurements were performed to evaluate the effects of RAGE deficiency. RAGE-deficient mice displayed reduced weight gain and visceral fat expansion compared to control mice. No difference in adipose tissue inflammation was observed between groups. RAGE deficiency did not affect WTD-induced monocytosis, circulating lipids or hepatic steatosis. WTD-induced hepatic neutrophil and macrophage accumulation and atherosclerotic plaque development was comparable between control and RAGE-deficient mice. No difference in AGE levels was observed. RAGE does not seem to play a major role in the development of NASH or atherosclerosis in a hyperlipidemic mouse model.


Asunto(s)
Aterosclerosis/genética , Inflamación/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Receptor para Productos Finales de Glicación Avanzada/genética , Receptores de LDL/genética , Animales , Aterosclerosis/etiología , Aterosclerosis/patología , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Productos Finales de Glicación Avanzada/genética , Humanos , Inflamación/patología , Macrófagos del Hígado/metabolismo , Macrófagos del Hígado/patología , Hígado/metabolismo , Hígado/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/patología , Factores de Riesgo
11.
Int J Mol Sci ; 19(5)2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29702605

RESUMEN

Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS). The immune response in MS patients leads to the infiltration of immune cells in the CNS and their subsequent activation. Immune cell activation induces a switch towards glycolysis. During glycolysis, the dicarbonyl product methylglyoxal (MGO) is produced. MGO is a glycating agent that can rapidly form advanced glycation endproducts (AGEs). In turn, AGEs are able to induce inflammatory responses. The glyoxalase system is the endogenous defense system of the body to reduce the burden of MGO thereby reducing AGE formation. This system consists of glyoxalase-1 and glyoxalase-2 which are able to detoxify MGO to D-lactate. We investigated whether AGE levels are induced in experimental autoimmune encephalitis (EAE), an inflammatory animal model of MS. Twenty seven days post EAE induction, MGO and AGE (Nε-(carboxymethyl)lysine (CML), Nε-(carboxyethyl)lysine (CEL), 5-hydro-5-methylimidazolone (MG-H1)) levels were significantly increased in the spinal cord of mice subjected to EAE. Yet, pyridoxamine treatment and glyoxalase-1 overexpression were unable to counteract AGE production during EAE and did not influence the clinical course of EAE. In conclusion, AGEs levels increase during EAE in the spinal cord, but AGE-modifying treatments do not inhibit EAE-induced AGE production and do not affect disease progression.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Productos Finales de Glicación Avanzada/sangre , Lactoilglutatión Liasa/metabolismo , Piridoxamina/uso terapéutico , Complejo Vitamínico B/uso terapéutico , Animales , Encéfalo/patología , Encefalomielitis Autoinmune Experimental/terapia , Femenino , Glucólisis , Humanos , Ratones , Ratones Endogámicos C57BL , Piridoxamina/administración & dosificación , Piruvaldehído/sangre , Médula Espinal/patología , Complejo Vitamínico B/administración & dosificación
12.
J Vis Exp ; (133)2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29578525

RESUMEN

Infiltration of immune cells in the subcutaneous and visceral adipose tissue (AT) deposits leads to a low-grade inflammation contributing to the development of obesity-associated complications such as type 2 diabetes. To quantitatively and qualitatively investigate the immune cell subsets in human AT deposits, we have developed a flow cytometry approach. The stromal vascular fraction (SVF), containing the immune cells, is isolated from subcutaneous and visceral AT biopsies by collagenase digestion. Adipocytes are removed after centrifugation. The SVF cells are stained for multiple membrane-bound markers selected to differentiate between immune cell subsets and analyzed using flow cytometry. As a result of this approach, pro- and anti-inflammatory macrophage subsets, dendritic cells (DCs), B-cells, CD4+ and CD8+ T-cells, and NK cells can be detected and quantified. This method gives detailed information about immune cells in AT and the amount of each specific subset. Since there are numerous fluorescent antibodies available, our flow cytometry approach can be adjusted to measure various other cellular and intracellular markers of interest.


Asunto(s)
Adipocitos/inmunología , Tejido Adiposo/inmunología , Citometría de Flujo/métodos , Obesidad/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
13.
Sci Rep ; 7: 42665, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198418

RESUMEN

Immune cell accumulation in adipose tissue (AT) is associated with the development of AT inflammation, resulting in metabolic dysfunction. Circulating immune cell patterns may reflect immune cell accumulation in expanding AT. However, data linking human leukocytes in blood and AT is lacking. We investigated whether blood immune cell populations are associated with their counterparts in subcutaneous (scAT) or visceral AT (vAT). Flow cytometry was performed on blood, scAT and vAT from 16 lean and 29 obese men. Circulating natural killer (NK)-cells, classical monocytes and nonclassical monocytes were higher in obese individuals. vAT, but not scAT, of obese individuals contained more inflammatory CD11c+ "M1" macrophages and NK cells compared to lean individuals. Blood classical monocytes were associated with CD11c+ macrophages in vAT but not scAT. This association was unrelated to expression of the adhesion molecules CD11b and CD11c or of the chemokine receptor CX3CR1 on these monocytes. Other AT immune cells were not associated with their respective counterparts in blood. Finally, CD11c+ macrophages and CD4+ T-cells in vAT were associated with their counterparts in scAT. In conclusion, blood classical monocytes reflect CD11c+ macrophages in vAT.


Asunto(s)
Antígeno CD11c/metabolismo , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Macrófagos/metabolismo , Macrófagos/patología , Monocitos/metabolismo , Monocitos/patología , Biomarcadores , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Estudios de Casos y Controles , Humanos , Inmunofenotipificación , Integrinas/metabolismo , Grasa Intraabdominal/inmunología , Recuento de Leucocitos , Macrófagos/inmunología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Obesidad/sangre , Obesidad/metabolismo , Obesidad/patología
14.
Int J Mol Sci ; 18(2)2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28212304

RESUMEN

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). The activation of inflammatory cells is crucial for the development of MS and is shown to induce intracellular glycolytic metabolism in pro-inflammatory microglia and macrophages, as well as CNS-resident astrocytes. Advanced glycation endproducts (AGEs) are stable endproducts formed by a reaction of the dicarbonyl compounds methylglyoxal (MGO) and glyoxal (GO) with amino acids in proteins, during glycolysis. This suggests that, in MS, MGO-derived AGEs are formed in glycolysis-driven cells. MGO and MGO-derived AGEs can further activate inflammatory cells by binding to the receptor for advanced glycation endproducts (RAGE). Recent studies have revealed that AGEs are increased in the plasma and brain of MS patients. Therefore, AGEs might contribute to the inflammatory status in MS. Moreover, the main detoxification system of dicarbonyl compounds, the glyoxalase system, seems to be affected in MS patients, which may contribute to high MGO-derived AGE levels. Altogether, evidence is emerging for a contributing role of AGEs in the pathology of MS. In this review, we provide an overview of the current knowledge on the involvement of AGEs in MS.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Esclerosis Múltiple/metabolismo , Piruvaldehído/metabolismo , Inmunidad Adaptativa , Animales , Glucólisis , Humanos , Inmunidad Innata , Peroxidación de Lípido , Esclerosis Múltiple/inmunología , Oxidación-Reducción , Estrés Oxidativo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...