Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Med Chem ; 67(8): 6207-6217, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38607332

RESUMEN

Sigma-1 receptor (σ1R) is an intracellular protein implicated in a spectrum of neurodegenerative conditions, notably Alzheimer's disease (AD). Positron emission tomography (PET) imaging of brain σ1R could provide a powerful tool for better understanding the underlying pathomechanism of σ1R in AD. In this study, we successfully developed a 18F-labeled σ1R radiotracer [18F]CNY-05 via an innovative ruthenium (Ru)-mediated 18F-deoxyfluorination method. [18F]CNY-05 exhibited preferable brain uptake, high specific binding, and slightly reversible pharmacokinetics within the PET scanning time window. PET imaging of [18F]CNY-05 in nonhuman primates (NHP) indicated brain permeability, metabolic stability, and safety. Moreover, autoradiography and PET studies of [18F]CNY-05 in the AD mouse model found a significantly decreased brain uptake compared to that in wild-type mice. Collectively, we have provided a novel 18F-radiolabeled σ1R PET probe, which enables visualizing brain σ1R in health and neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Radiofármacos , Receptores sigma , Receptor Sigma-1 , Receptores sigma/metabolismo , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Ratones , Radiofármacos/química , Radiofármacos/farmacocinética , Radiofármacos/síntesis química , Masculino , Imagen Molecular/métodos , Halogenación , Distribución Tisular , Humanos
2.
Bioorg Chem ; 146: 107279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513325

RESUMEN

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic strategy for various neurodegenerative disorders. The development of a positron emission tomography (PET) probe for brain RIPK1 imaging could offer a valuable tool to assess therapeutic effectiveness and uncover the neuropathology associated with RIPK1. In this study, we present the development and characterization of two new PET radioligands, [11C]PB218 and [11C]PB220, which have the potential to facilitate brain RIPK1 imaging. [11C]PB218 and [11C]PB220 were successfully synthesized with a high radiochemical yield (34 % - 42 %) and molar activity (293 - 314 GBq/µmol). PET imaging characterization of two radioligands was conducted in rodents, demonstrating that both newly developed tracers have good brain penetration (maximum SUV = 0.9 - 1.0) and appropriate brain clearance kinetic profiles. Notably, [11C]PB218 has a more favorable binding specificity than [11C]PB220. A PET/MR study of [11C]PB218 in a non-human primate exhibited good brain penetration, desirable kinetic properties, and a safe profile, thus supporting the translational applicability of our new probe. These investigations enable further translational exploration of [11C]PB218 for drug discovery and PET probe development targeting RIPK1.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Animales , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Radiofármacos/química , Radioquímica , Piridinas/metabolismo
3.
J Med Chem ; 67(1): 555-571, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38150705

RESUMEN

The NOD-like receptor (NLR) family pyrin-domain-containing 3 (NLRP3) inflammasome, an essential component of the innate immune system, has been emerging as a viable drug target and a potential biomarker for human diseases. In our efforts to develop novel small molecule NLRP3 inhibitors, a 1-(5-chloro-2-methoxybenzyl)-4-phenyl-1H-1,2,3-triazole scaffold was designed via a rational approach based on our previous leads. Structure-activity relationship studies and biophysical studies identified a new lead compound 8 as a potent (IC50: 0.55 ± 0.16 µM), selective, and direct NLRP3 inhibitor. Positron emission tomography (PET) imaging studies of [11C]8 demonstrated its rapid and high brain uptake as well as fast washout in mice and rhesus macaque. Notably, plasma kinetic analysis of this radiotracer from the PET/magnetic resonance imaging studies in rhesus macaque suggested radiometabolic stability. Collectively, our data not only encourage further studies of this lead compound but also warrant further optimization to generate additional novel NLRP3 inhibitors and suitable central nervous system PET radioligands with translational promise.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Humanos , Macaca mulatta , Cinética , Tomografía de Emisión de Positrones
4.
ACS Omega ; 8(48): 45438-45446, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075761

RESUMEN

This study aimed to develop a template-based attenuation correction (AC) for the nonhuman primate (NHP) brain. We evaluated the effects of AC on positron emission tomography (PET) data quantification with two experimental paradigms by comparing the quantitative outcomes obtained using a segmentation-based AC versus template-based AC. Population-based atlas was generated from ten adult rhesus macaques. Bolus experiments using [18F]PF-06455943 and a bolus-infusion experiment using [11C]OMAR were performed on a 3T Siemens PET/magnetic resonance-imaging (MRI). PET data were reconstructed with either µ map obtained from the segmentation-based AC or template-based AC. The standard uptake value (SUV), volume of distribution (VT), or percentage occupancy of rimonabant were calculated for [18F]PF-06455943 and [11C]OMAR PET, respectively. The leave-one-out cross-validation showed that the absolute percentage differences were 2.54 ± 2.86% for all region of interests. The segmentation-based AC had a lower SUV and VT (∼10%) of [18F]PF-06455943 than the template-based method. The estimated occupancy was higher in the template-based method compared to the segmentation-based AC in the bolus-infusion study. However, future studies may be needed if a different reference tissue is selected for data quantification. Our template-based AC approach was successfully developed and applied to the NHP brain. One limitation of this study was that validation was performed by comparing two different MR-based AC approaches without validating against AC methods based on computed tomography (CT).

5.
Neuroimage ; 283: 120416, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866759

RESUMEN

While all reversible receptor-targeting radioligands for positron emission tomography (PET) can be displaced by competition with an antagonist at the receptor, many radiotracers show limited occupancies using agonists even at high doses. [11C]Raclopride, a D2/D3 receptor radiotracer with rapid kinetics, can identify the direction of changes in the neurotransmitter dopamine, but quantitative interpretation of the relationship between dopamine levels and radiotracer binding has proven elusive. Agonist-induced receptor desensitization and internalization, a homeostatic mechanism to downregulate neurotransmitter-mediated function, can shift radioligand-receptor binding affinity and confound PET interpretations of receptor occupancy. In this study, we compared occupancies induced by amphetamine (AMP) in drug-naive wild-type (WT) and internalization-compromised ß-arrestin-2 knockout (KO) mice using a within-scan drug infusion to modulate the kinetics of [11C]raclopride. We additionally performed studies at 3 h following AMP pretreatment, with the hypothesis that receptor internalization should markedly attenuate occupancy on the second challenge, because dopamine cannot access internalized receptors. Without prior AMP treatment, WT mice exhibited somewhat larger binding potential than KO mice but similar AMP-induced occupancy. At 3 h after AMP treatment, WT mice exhibited binding potentials that were 15 % lower than KO mice. At this time point, occupancy was preserved in KO mice but suppressed by 60 % in WT animals, consistent with a model in which most receptors contributing to binding potential in WT animals were not functional. These results demonstrate that arrestin-mediated receptor desensitization and internalization produce large effects in PET [11C]raclopride occupancy studies using agonist challenges.


Asunto(s)
Dopamina , Receptores de Dopamina D3 , Ratones , Animales , Receptores de Dopamina D3/metabolismo , Racloprida/farmacología , Racloprida/metabolismo , Dopamina/metabolismo , Antagonistas de Dopamina , Arrestina/metabolismo , Tomografía de Emisión de Positrones/métodos , Agonistas de Dopamina/farmacología , Anfetaminas , Anfetamina/farmacología
6.
ACS Chem Neurosci ; 14(3): 370-377, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36630128

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the common causes of inherited Parkinson's disease (PD) and emerged as a causative PD gene. Particularly, LRRK2-Gly2019Ser mutation was reported to alter the early phase of neuronal differentiation, increasing cell death. Selective inhibitors of LRRK2 kinase activity were considered as a promising therapeutic target for PD treatment. However, the development of effective brain-penetrant LRRK2 inhibitors remains challenging. Recently, we have developed a novel positron emission tomography (PET) radioligand for LRRK2 imaging and demonstrated preferable tracer properties in rodents. Herein, we evaluate [18F]PF-06455943 quantification methods in the nonhuman primate (NHP) brain using full kinetic modeling with radiometabolite-corrected arterial blood samples, and homologous blocking with two doses (0.1 and 0.3 mg/kg). Kinetic analysis results demonstrated that a two-tissue compartmental model and a Logan graphical analysis are appropriate for [18F]PF-06455943 PET quantification. In addition, we observed that total distribution volume (VT) values can be reliably estimated with as short as a 30 min scan duration. Homologous blocking studies confirmed the specific binding of [18F]PF-06455943 and revealed that the nonradioactive mass of PF-06455943 achieved 45-55% of VT displacement in the whole brain. This work supports the translation of [18F]PF-06455943 PET imaging for the human brain and target occupancy studies.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Animales , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Tomografía de Emisión de Positrones/métodos , Primates/metabolismo , Radiofármacos/química
7.
Pain Med ; 24(Suppl 1): S3-S12, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36622041

RESUMEN

In 2019, the National Health Interview survey found that nearly 59% of adults reported pain some, most, or every day in the past 3 months, with 39% reporting back pain, making back pain the most prevalent source of pain, and a significant issue among adults. Often, identifying a direct, treatable cause for back pain is challenging, especially as it is often attributed to complex, multifaceted issues involving biological, psychological, and social components. Due to the difficulty in treating the true cause of chronic low back pain (cLBP), an over-reliance on opioid pain medications among cLBP patients has developed, which is associated with increased prevalence of opioid use disorder and increased risk of death. To combat the rise of opioid-related deaths, the National Institutes of Health (NIH) initiated the Helping to End Addiction Long-TermSM (HEAL) initiative, whose goal is to address the causes and treatment of opioid use disorder while also seeking to better understand, diagnose, and treat chronic pain. The NIH Back Pain Consortium (BACPAC) Research Program, a network of 14 funded entities, was launched as a part of the HEAL initiative to help address limitations surrounding the diagnosis and treatment of cLBP. This paper provides an overview of the BACPAC research program's goals and overall structure, and describes the harmonization efforts across the consortium, define its research agenda, and develop a collaborative project which utilizes the strengths of the network. The purpose of this paper is to serve as a blueprint for other consortia tasked with the advancement of pain related science.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Trastornos Relacionados con Opioides , Adulto , Humanos , Proyectos de Investigación , Analgésicos Opioides/uso terapéutico , Comités Consultivos , Dimensión del Dolor/métodos , Dolor Crónico/epidemiología , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/terapia , Trastornos Relacionados con Opioides/epidemiología , Trastornos Relacionados con Opioides/terapia
8.
J Med Chem ; 66(3): 1712-1724, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36256881

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) has been demonstrated to be closely involved in the pathogenesis of Parkinson's disease (PD), and pharmacological blockade of LRRK2 represents a new opportunity for therapeutical treatment of PD and other related neurodegenerative conditions. The development of an LRRK2-specific positron emission tomography (PET) ligand would enable a target occupancy study in vivo and greatly facilitate LRRK2 drug discovery and clinical translation as well as provide a molecular imaging tool for studying physiopathological changes in neurodegenerative diseases. In this work, we present the design and development of compound 8 (PF-06455943) as a promising PET radioligand through a PET-specific structure-activity relationship optimization, followed by comprehensive pharmacology and ADME/neuroPK characterization. Following an efficient 18F-labeling method, we have confirmed high brain penetration of [18F]8 in nonhuman primates (NHPs) and validated its specific binding in vitro by autoradiography in postmortem NHP brain tissues and in vivo by PET imaging studies.


Asunto(s)
Enfermedad de Parkinson , Tomografía de Emisión de Positrones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ligandos , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones/métodos
9.
Acta Pharm Sin B ; 12(10): 3891-3904, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36213537

RESUMEN

Although the epigenetic regulatory protein histone deacetylase 6 (HDAC6) has been recently implicated in the etiology of Alzheimer's disease (AD), little is known about the role of HDAC6 in the etiopathogenesis of AD and whether HDAC6 can be a potential therapeutic target for AD. Here, we performed positron emission tomography (PET) imaging in combination with histopathological analysis to better understand the underlying pathomechanisms of HDAC6 in AD. We first developed [18F]PB118 which was demonstrated as a valid HDAC6 radioligand with excellent brain penetration and high specificity to HDAC6. PET studies of [18F]PB118 in 5xFAD mice showed significantly increased radioactivity in the brain compared to WT animals, with more pronounced changes identified in the cortex and hippocampus. The translatability of this radiotracer for AD in a potential human use was supported by additional studies, including similar uptake profiles in non-human primates, an increase of HDAC6 in AD-related human postmortem hippocampal tissues by Western blotting protein analysis, and our ex vivo histopathological analysis of HDAC6 in postmortem brain tissues of our animals. Collectively, our findings show that HDAC6 may lead to AD by mechanisms that tend to affect brain regions particularly susceptible to AD through an association with amyloid pathology.

11.
Chem Commun (Camb) ; 58(69): 9654-9657, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35943085

RESUMEN

The two tandem bromodomains of BET (bromodomain and extra-terminal domain) proteins (BD1 and BD2) may play distinct and critical roles in neurological diseases. To better understand the underlying mechanisms of the BD1 bromodomain and facilitate brain permeable domain-selective inhibitor development, we describe here the development of the first BET BD1 positron emission tomography (PET) radioligand [11C]1a. Compound 1a was tested to possess potent binding affinities and good selectivity (>20-fold over BD2) for BD1 bromodomains of BRD2 (Kd = 25 nM), BRD3 (Kd = 24 nM), and BRD4 (Kd = 19 nM). Physicochemical characterization of 1a indicated the brain permeability and specific binding. [11C]1a was radiosynthesized in a good radiochemical yield (RCY: 25-30%) and molar activity (258 GBq µmol-1). The PET imaging studies of [11C]1a in mice showed moderate brain uptake (with peak SUV = 0.7) and binding specificity. Furthermore, [11C]1a demonstrated translational potential in the non-human primate (NHP) PET imaging study, which sets the stage for clinical translation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Animales , Proteínas de Ciclo Celular , Ratones , Proteínas Nucleares/metabolismo , Tomografía de Emisión de Positrones , Dominios Proteicos , Factores de Transcripción/química
12.
Nat Commun ; 13(1): 4171, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853847

RESUMEN

Alzheimer's disease (AD) is characterized by the brain accumulation of amyloid-ß and tau proteins. A growing body of literature suggests that epigenetic dysregulations play a role in the interplay of hallmark proteinopathies with neurodegeneration and cognitive impairment. Here, we aim to characterize an epigenetic dysregulation associated with the brain deposition of amyloid-ß and tau proteins. Using positron emission tomography (PET) tracers selective for amyloid-ß, tau, and class I histone deacetylase (HDAC I isoforms 1-3), we find that HDAC I levels are reduced in patients with AD. HDAC I PET reduction is associated with elevated amyloid-ß PET and tau PET concentrations. Notably, HDAC I reduction mediates the deleterious effects of amyloid-ß and tau on brain atrophy and cognitive impairment. HDAC I PET reduction is associated with 2-year longitudinal neurodegeneration and cognitive decline. We also find HDAC I reduction in the postmortem brain tissue of patients with AD and in a transgenic rat model expressing human amyloid-ß plus tau pathology in the same brain regions identified in vivo using PET. These observations highlight HDAC I reduction as an element associated with AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Histona Desacetilasa 1 , Adamantano/análogos & derivados , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Histona Desacetilasa 1/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos , Tomografía de Emisión de Positrones/métodos , Ratas , Proteínas tau/metabolismo
13.
Psychol Med ; 52(9): 1736-1745, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33046145

RESUMEN

BACKGROUND: Although aberrant intrinsic functional connectivity has been reported in attention-deficit/hyperactivity disorder (ADHD), we have a limited understanding of whether connectivity alterations are related to the familial risk of ADHD. METHODS: Fifty-three probands with ADHD, their unaffected siblings (n = 53) and typically developing controls (n = 53) underwent resting-state functional magnetic resonance imaging scans. A seed-based approach with the bilateral precuneus/posterior cingulate cortex (PCC) was used to derive a whole-brain functional connectivity map in each subject. The differences in functional connectivity among the three groups were tested with one-way ANOVA using randomized permutation. Comparisons between two groups were also performed to examine the increase or decrease in connectivity. The severity of ADHD symptoms was used to identify brain regions where symptom severity is correlated to the strength of intrinsic functional connectivity. RESULTS: When compared to controls, both probands and unaffected siblings showed increased functional connectivity in the left insula and left inferior frontal gyrus. The connectivity in these regions was linked to better performance in response inhibition in the control group but absent in other groups. Higher ADHD symptom severity was correlated with increased functional connectivity in bilateral fronto-parietal-temporal regions only noted in probands with ADHD. CONCLUSIONS: Alterations in resting-state functional connectivities with the precuneus/PCC, hubs of default-mode network, account for the underlying familial risks of ADHD. Since the left insula and left inferior frontal gyri are key regions of the salience and frontoparietal network, respectively, future studies focusing on alterations of cross-network functional connectivity as the familial risk of ADHD are suggested.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Encéfalo , Mapeo Encefálico , Predisposición Genética a la Enfermedad , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas , Hermanos
14.
Alzheimers Dement ; 17(12): 1988-1997, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33860595

RESUMEN

INTRODUCTION: Aging is an inevitable physiological process and the biggest risk factor of Alzheimer's disease (AD). Developing an imaging tracer to visualize aging-related changes in the brain may provide a useful biomarker in elucidating neuroanatomical mechanisms of AD. METHODS: We developed and characterized a new tracer that can be used to visualize SIRT1 in brains related to aging and AD by positron emission tomography imaging. RESULTS: The SIRT1 tracer displayed desirable brain uptake and selectivity, as well as stable metabolism and proper kinetics and distribution in rodent and nonhuman primate brains. This new tracer was further validated by visualizing SIRT1 in brains of AD transgenic mice, compared to nontransgenic animals. DISCUSSION: Our SIRT1 tracer not only enables, for the first time, the demonstration of SIRT1 in animal brains, but also allows visualization and recapitulation of AD-related SIRT1 neuropathological changes in animal brains.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/patología , Imagen Molecular , NAD/metabolismo , Sirtuina 1/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Tomografía de Emisión de Positrones
15.
J Exp Med ; 217(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32936886

RESUMEN

The pathogenesis of Alzheimer's disease (AD) is primarily driven by brain accumulation of the amyloid-ß-42 (Aß42) peptide generated from the amyloid-ß precursor protein (APP) via cleavages by ß- and γ-secretase. γ-Secretase is a prime drug target for AD; however, its brain regional expression and distribution remain largely unknown. Here, we are aimed at developing molecular imaging tools for visualizing γ-secretase. We used our recently developed γ-secretase modulators (GSMs) and synthesized our GSM-based imaging agent, [11C]SGSM-15606. We subsequently performed molecular imaging in rodents, including AD transgenic animals, and macaques, which revealed that our probe displayed good brain uptake and selectivity, stable metabolism, and appropriate kinetics and distribution for imaging γ-secretase in the brain. Interestingly, rodents and macaques shared certain brain areas with high γ-secretase expression, suggesting a functional conservation of γ-secretase. Collectively, we have provided the first molecular brain imaging of γ-secretase, which may not only accelerate our drug discovery for AD but also advance our understanding of AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/enzimología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Imagen Molecular , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Ratones Transgénicos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Presenilina-1/metabolismo
16.
Bioorg Med Chem Lett ; 30(16): 127326, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631531

RESUMEN

Selective DAAO inhibitors have demonstrated promising therapeutic effects in clinical studies, including clinically alleviating symptoms of schizophrenic patients and ameliorating cognitive function in Alzheimer's patients with early phase. Herein we report the synthesis and preliminary evaluation of a 11C-labeled positron emission tomography ligand based on a DAAO inhibitor, DAO-1903 (8). 11C-Isotopologue of 8 was prepared in high radiochemical yield with high radiochemical purity (>99%) and high molar activity (>37 GBq/µmol). In vitro autoradiography studies indicated that the ligand possessed high in vitro specific binding to DAAO, while in vivo dynamic PET studies demonstrated that [11C]8 failed to cross the blood-brain barrier possibly due to moderate brain efflux mechanism. Further chemical scaffold optimization is necessary to overcome limited brain permeability and improve specific binding.


Asunto(s)
Encéfalo/diagnóstico por imagen , Tomografía de Emisión de Positrones , Radiofármacos/química , Animales , D-Aminoácido Oxidasa/antagonistas & inhibidores , D-Aminoácido Oxidasa/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Radiofármacos/farmacología , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
17.
ACS Chem Neurosci ; 11(13): 1855-1862, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32559067

RESUMEN

This Viewpoint aims to highlight positron emission tomography (PET) research studies that have shaped our understanding of the endocannabinoid system (ECS) through radiopharmaceutical targeting of cannabinoid receptors 1 and 2 (CB1 and CB2), and the enzyme fatty acid amide hydrolase (FAAH), in several brain health illnesses including addiction, schizophrenia, eating disorders, and post-traumatic stress disorder. Advances in radiochemistry, including 11C-carbonylation and radiofluorination of nonactivated aromatic rings, are accelerating the translation of radiotracers with optimal kinetics, bringing us closer to clinical PET research studies to image the enzyme monoacylglycerol lipase (MAGL) and enabling the imaging of unexplored targets in the ECS.


Asunto(s)
Endocannabinoides , Monoacilglicerol Lipasas , Amidohidrolasas/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Inhibidores Enzimáticos , Monoacilglicerol Lipasas/metabolismo , Tomografía de Emisión de Positrones , Radioquímica , Receptor Cannabinoide CB1
18.
J Cereb Blood Flow Metab ; 40(6): 1148-1166, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32169011

RESUMEN

Hybrid imaging using PET/MRI has emerged as a platform for elucidating novel neurobiology, molecular and functional changes in disease, and responses to physiological or pharmacological interventions. For the central nervous system, PET/MRI has provided insights into biochemical processes, linking selective molecular targets and distributed brain function. This review highlights several examples that leverage the strengths of simultaneous PET/MRI, which includes measuring the perturbation of multi-modal imaging signals on dynamic timescales during pharmacological challenges, physiological interventions or behavioral tasks. We discuss important considerations for the experimental design of dynamic PET/MRI studies and data analysis approaches for comparing and quantifying simultaneous PET/MRI data. The primary focus of this review is on functional PET/MRI studies of neurotransmitter and receptor systems, with an emphasis on the dopamine, opioid, serotonin and glutamate systems as molecular neuromodulators. In this context, we provide an overview of studies that employ interventions to alter the activity of neuroreceptors or the release of neurotransmitters. Overall, we emphasize how the synergistic use of simultaneous PET/MRI with appropriate study design and interventions has the potential to expand our knowledge about the molecular and functional dynamics of the living human brain. Finally, we give an outlook on the future opportunities for simultaneous PET/MRI.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Células Receptoras Sensoriales/metabolismo , Encéfalo/metabolismo , Humanos
19.
Molecules ; 25(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106419

RESUMEN

The orexin receptor (OX) is critically involved in motivation and sleep-wake regulation and holds promising therapeutic potential in various mood disorders. To further investigate the role of orexin receptors (OXRs) in the living human brain and to evaluate the treatment potential of orexin-targeting therapeutics, we herein report a novel PET probe ([11C]CW24) for OXRs in the brain. CW24 has moderate binding affinity for OXRs (IC50 = 0.253 µM and 1.406 µM for OX1R and OX2R, respectively) and shows good selectivity to OXRs over 40 other central nervous system (CNS) targets. [11C]CW24 has high brain uptake in rodents and nonhuman primates, suitable metabolic stability, and appropriate distribution and pharmacokinetics for brain positron emission tomography (PET) imaging. [11C]CW24 warrants further evaluation as a PET imaging probe of OXRs in the brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen , Receptores de Orexina/aislamiento & purificación , Tomografía de Emisión de Positrones , Encéfalo/fisiología , Humanos , Receptores de Orexina/genética , Sueño/genética , Sueño/fisiología
20.
Neurobiol Aging ; 86: 64-74, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31813626

RESUMEN

Reduced cerebral blood flow (CBF), an indicator of neurovascular processes and metabolic demands, is a common finding in Alzheimer's disease. However, little is known about what contributes to CBF deficits in individuals with mild cognitive impairment (MCI). We examine regional CBF differences in 17 MCI compared with 21 age-matched cognitively healthy older adults. Next, we examined associations between CBF, white matter lesion (WML) volume, amplitude of low-frequency fluctuations, and cortical thickness to better understand whether altered CBF was detectable before other markers and the potential mechanistic underpinnings of CBF deficits in MCI. MCI had significantly reduced CBF, whereas cortical thickness and amplitude of low-frequency fluctuation were not affected. Reduced CBF was associated with the WML volume but not associated with other measures. Given the presumed vascular etiology of WML and relative worsening of vascular health in MCI, it may suggest CBF deficits result from early vascular as opposed to metabolic deficits in MCI. These findings may support vascular mechanisms as an underlying component of cognitive impairment.


Asunto(s)
Circulación Cerebrovascular , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Anciano , Enfermedad de Alzheimer , Disfunción Cognitiva/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tamaño de los Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...