Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38426820

RESUMEN

Environmental exposure data are a key component of chemical and ecological assessments, supporting and guiding environmental management decisions and regulations. Measures taken to protect the environment based on exposure data can have social and economic implications. Flawed information may lead to measures being taken in the wrong place or to important action not being taken. Although the advantages of harmonizing evaluation methods have been demonstrated for hazard information, no comparable approach is established for exposure data evaluation. The goal of Criteria for Reporting and Evaluating Exposure Datasets (CREED) is to improve the transparency and consistency with which exposure data are evaluated regarding usability in environmental assessments. Here, we describe the synthesis of the CREED process, and propose methods and tools to summarize and interpret the outcomes of the data usability evaluation in support of decision-making and communication. The CREED outcome includes a summary that reports any key gaps or shortcomings in the reliability (data quality) and relevance (fitness for purpose) of the data being considered. The approach has been implemented in a workbook template (provided as Supporting Information), for assessors to readily follow the workflow and create a report card for any given dataset. The report card communicates the outcome of the CREED evaluation and summarizes important dataset attributes, providing a concise reference pertaining to the dataset usability for a specified purpose and documenting data limitations that may restrict data use or increase environmental assessment uncertainty. The application of CREED is demonstrated through three case studies, which also were used during beta testing of the methodology. As experience with the CREED approach application develops, further improvements may be identified and incorporated into the framework. Such development is to be encouraged in the interest of better science and decision-making, and to make environmental monitoring and assessment more cost-effective. Integr Environ Assess Manag 2024;00:1-16. © 2024 SETAC.

2.
Sci Total Environ ; 848: 157124, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35792263

RESUMEN

Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Ecosistema , Ozono/análisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...