Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Brain Spine ; 4: 102819, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706801

RESUMEN

Introduction: Paediatric cerebellar glioblastoma is an exceptionally rare clinical entity, with very few cases described in the literature. In the majority of reported cases, prognosis is extremely poor, despite surgical and oncological management. The paucity of data results in lack of consensus as to the optimal management of these patients, with the objective of prolonging survival. Research question: Do patient or tumour characteristics suggest more favourable rates of progression-free survival in paediatric cerebellar glioblastoma? Material and methods: Tumour histopathology plus retrospective molecular analysis of archived samples, as well treatment strategy and patient characteristics of a six-year-old child with cerebellar glioblastoma and prolonged progression-free survival were assessed. Characteristics in the published literature that inferred prolonged survival were identified and compared. Results: Paediatric cerebellar glioblastoma is extremely rare, with only a handful of cases reported over several decades, during which time diagnostic and therapeutic techniques have evolved markedly. Consequently, the scarcity of data with sufficient granularity means that limited conclusions can be drawn. Specific clinical and histopathological factors (i.e. female sex, young age, EGFR negativity and surgical resection plus adjuvant chemoradiotherapy) may indicate a more favourable progression-free survival. Discussion and conclusion: Rates of progression-free survival in this rare condition are generally poor, however, several patient and tumour characteristics may infer more favourable prognosis. As increasingly refined means of diagnosis and characterisation are developed, particularly as a result of advances in molecular analyses, more adjuvant treatment options are likely to come on stream in future.

2.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674030

RESUMEN

Age-associated deep-subcortical white matter lesions (DSCLs) are an independent risk factor for dementia, displaying high levels of CD68+ microglia. This study aimed to characterize the transcriptomic profile of microglia in DSCLs and surrounding radiologically normal-appearing white matter (NAWM) compared to non-lesional control white matter. CD68+ microglia were isolated from white matter groups (n = 4 cases per group) from the Cognitive Function and Ageing Study neuropathology cohort using immuno-laser capture microdissection. Microarray gene expression profiling, but not RNA-sequencing, was found to be compatible with immuno-LCM-ed post-mortem material in the CFAS cohort and identified significantly differentially expressed genes (DEGs). Functional grouping and pathway analysis were assessed using the Database for Annotation Visualization and Integrated Discovery (DAVID) software, and immunohistochemistry was performed to validate gene expression changes at the protein level. Transcriptomic profiling of microglia in DSCLs compared to non-lesional control white matter identified 181 significant DEGs (93 upregulated and 88 downregulated). Functional clustering analysis in DAVID revealed dysregulation of haptoglobin-haemoglobin binding (Enrichment score 2.5, p = 0.017), confirmed using CD163 immunostaining, suggesting a neuroprotective microglial response to blood-brain barrier dysfunction in DSCLs. In NAWM versus control white matter, microglia exhibited 347 DEGs (209 upregulated, 138 downregulated), with significant dysregulation of protein de-ubiquitination (Enrichment score 5.14, p < 0.001), implying an inability to maintain protein homeostasis in NAWM that may contribute to lesion spread. These findings enhance understanding of microglial transcriptomic changes in ageing white matter pathology, highlighting a neuroprotective adaptation in DSCLs microglia and a potentially lesion-promoting phenotype in NAWM microglia.


Asunto(s)
Envejecimiento , Barrera Hematoencefálica , Microglía , Transcriptoma , Sustancia Blanca , Humanos , Microglía/metabolismo , Microglía/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Masculino , Femenino , Envejecimiento/genética , Anciano , Perfilación de la Expresión Génica/métodos , Anciano de 80 o más Años , Neuroprotección/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos CD/metabolismo , Antígenos CD/genética
3.
Brain Commun ; 6(2): fcae078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510211

RESUMEN

Gluten sensitivity has long been recognized exclusively for its gastrointestinal involvement; however, more recent research provides evidence for the existence of neurological manifestations that can appear in combination with or independent of the small bowel manifestations. Amongst all neurological manifestations of gluten sensitivity, gluten ataxia is the most commonly occurring one, accounting for up to 40% of cases of idiopathic sporadic ataxia. However, despite its prevalence, its neuropathological basis is still poorly defined. Here, we provide a neuropathological characterization of gluten ataxia and compare the presence of neuroinflammatory markers glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, major histocompatibility complex II and cluster of differentiation 68 in the central nervous system of four gluten ataxia cases to five ataxia controls and seven neurologically healthy controls. Our results demonstrate that severe cerebellar atrophy, cluster of differentiation 20+ and cluster of differentiation 8+ lymphocytic infiltration in the cerebellar grey and white matter and a significant upregulation of microglial immune activation in the cerebellar granular layer, molecular layer and cerebellar white matter are features of gluten ataxia, providing evidence for the involvement of both cellular and humoral immune-mediated processes in gluten ataxia pathogenesis.

4.
Brain Pathol ; : e13247, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374326

RESUMEN

Early diagnosis of dementia diseases, such as Alzheimer's disease, is difficult because of the time and resources needed to perform neuropsychological and pathological assessments. Given the increasing use of machine learning methods to evaluate neuropathology features in the brains of dementia patients, it is important to investigate how the selection of features may be impacted and which features are most important for the classification of dementia. We objectively assessed neuropathology features using machine learning techniques for filtering features in two independent ageing cohorts, the Cognitive Function and Aging Studies (CFAS) and Alzheimer's Disease Neuroimaging Initiative (ADNI). The reliefF and least loss methods were most consistent with their rankings between ADNI and CFAS; however, reliefF was most biassed by feature-feature correlations. Braak stage was consistently the highest ranked feature and its ranking was not correlated with other features, highlighting its unique importance. Using a smaller set of highly ranked features, rather than all features, can achieve a similar or better dementia classification performance in CFAS (60%-70% accuracy with Naïve Bayes). This study showed that specific neuropathology features can be prioritised by feature filtering methods, but they are impacted by feature-feature correlations and their results can vary between cohort studies. By understanding these biases, we can reduce discrepancies in feature ranking and identify a minimal set of features needed for accurate classification of dementia.

5.
Neurosci Res ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38278219

RESUMEN

Altered cholesterol metabolism is implicated in brain ageing and Alzheimer's disease. We examined whether key genes regulating cholesterol metabolism and levels of brain cholesterol are altered in dementia and Alzheimer's disease neuropathological change (ADNC). Temporal cortex (n = 99) was obtained from the Cognitive Function and Ageing Study. Expression of the cholesterol biosynthesis rate-limiting enzyme HMG-CoA reductase (HMGCR) and its regulator, SREBP2, were detected using immunohistochemistry. Expression of HMGCR, SREBP2, CYP46A1 and ABCA1 were quantified by qPCR in samples enriched for astrocyte and neuronal RNA following laser-capture microdissection. Total cortical cholesterol was measured using the Amplex Red assay. HMGCR and SREBP2 proteins were predominantly expressed in pyramidal neurones, and in glia. Neuronal HMGCR did not vary with ADNC, oxidative stress, neuroinflammation or dementia status. Expression of HMGCR neuronal mRNA decreased with ADNC (p = 0.022) and increased with neuronal DNA damage (p = 0.049), whilst SREBP2 increased with ADNC (p = 0.005). High or moderate tertiles for cholesterol levels were associated with increased dementia risk (OR 1.44, 1.58). APOE ε4 allele was not associated with cortical cholesterol levels. ADNC is associated with gene expression changes that may impair cholesterol biosynthesis in neurones but not astrocytes, whilst levels of cortical cholesterol show a weak relationship to dementia status.

6.
Neuropathol Appl Neurobiol ; 49(4): e12923, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37462105

RESUMEN

The epidemiological neuropathology perspective of population and community-based studies allows unbiased assessment of the prevalence of various pathologies and their relationships to late-life dementia. In addition, this approach provides complementary insights to conventional case-control studies, which tend to be more representative of a younger clinical cohort. The Cognitive Function and Ageing Study (CFAS) is a longitudinal study of cognitive impairment and frailty in the general United Kingdom population. In this review, we provide an overview of the major findings from CFAS, alongside other studies, which have demonstrated a high prevalence of pathology in the ageing brain, particularly Alzheimer's disease neuropathological change and vascular pathology. Increasing burdens of these pathologies are the major correlates of dementia, especially neurofibrillary tangles, but there is substantial overlap in pathology between those with and without dementia, particularly at intermediate burdens of pathology and also at the oldest ages. Furthermore, additional pathologies such as limbic-predominant age-related TDP-43 encephalopathy, ageing-related tau astrogliopathy and primary age-related tauopathies contribute to late-life dementia. Findings from ageing population-representative studies have implications for the understanding of dementia pathology in the community. The high prevalence of pathology and variable relationship to dementia status has implications for disease definition and indicate a role for modulating factors on cognitive outcome. The complexity of late-life dementia, with mixed pathologies, indicates a need for a better understanding of these processes across the life-course to direct the best research for reducing risk in later life of avoidable clinical dementia syndromes.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Estudios Longitudinales , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/patología , Encéfalo/patología , Tauopatías/patología
7.
Alzheimers Res Ther ; 15(1): 47, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36895019

RESUMEN

Although a variety of brain lesions may contribute to the pathological assessment of dementia, the relationship of these lesions to dementia, how they interact and how to quantify them remains uncertain. Systematically assessing neuropathological measures by their degree of association with dementia may lead to better diagnostic systems and treatment targets. This study aims to apply machine learning approaches to feature selection in order to identify critical features of Alzheimer-related pathologies associated with dementia. We applied machine learning techniques for feature ranking and classification to objectively compare neuropathological features and their relationship to dementia status during life using a cohort (n=186) from the Cognitive Function and Ageing Study (CFAS). We first tested Alzheimer's Disease and tau markers and then other neuropathologies associated with dementia. Seven feature ranking methods using different information criteria consistently ranked 22 out of the 34 neuropathology features for importance to dementia classification. Although highly correlated, Braak neurofibrillary tangle stage, beta-amyloid and cerebral amyloid angiopathy features were ranked the highest. The best-performing dementia classifier using the top eight neuropathological features achieved 79% sensitivity, 69% specificity and 75% precision. However, when assessing all seven classifiers and the 22 ranked features, a substantial proportion (40.4%) of dementia cases was consistently misclassified. These results highlight the benefits of using machine learning to identify critical indices of plaque, tangle and cerebral amyloid angiopathy burdens that may be useful for classifying dementia.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/metabolismo , Angiopatía Amiloide Cerebral/patología , Aprendizaje Automático , Encéfalo/metabolismo
8.
Lancet Healthy Longev ; 4(3): e115-e125, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36870337

RESUMEN

BACKGROUND: Population-based autopsy studies provide valuable insights into the causes of dementia but are limited by sample size and restriction to specific populations. Harmonisation across studies increases statistical power and allows meaningful comparisons between studies. We aimed to harmonise neuropathology measures across studies and assess the prevalence, correlation, and co-occurrence of neuropathologies in the ageing population. METHODS: We combined data from six community-based autopsy cohorts in the US and the UK in a coordinated cross-sectional analysis. Among all decedents aged 80 years or older, we assessed 12 neuropathologies known to be associated with dementia: arteriolosclerosis, atherosclerosis, macroinfarcts, microinfarcts, lacunes, cerebral amyloid angiopathy, Braak neurofibrillary tangle stage, Consortium to Establish a Registry for Alzheimer's disease (CERAD) diffuse plaque score, CERAD neuritic plaque score, hippocampal sclerosis, limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and Lewy body pathology. We divided measures into three groups describing level of confidence (low, moderate, and high) in harmonisation. We described the prevalence, correlations, and co-occurrence of neuropathologies. FINDINGS: The cohorts included 4354 decedents aged 80 years or older with autopsy data. All cohorts included more women than men, with the exception of one study that only included men, and all cohorts included decedents at older ages (range of mean age at death across cohorts 88·0-91·6 years). Measures of Alzheimer's disease neuropathological change, Braak stage and CERAD scores, were in the high confidence category, whereas measures of vascular neuropathologies were in the low (arterioloscerosis, atherosclerosis, cerebral amyloid angiopathy, and lacunes) or moderate (macroinfarcts and microinfarcts) categories. Neuropathology prevalence and co-occurrence was high (2443 [91%] of 2695 participants had more than one of six key neuropathologies and 1106 [41%] of 2695 had three or more). Co-occurrence was strongly but not deterministically associated with dementia status. Vascular and Alzheimer's disease features clustered separately in correlation analyses, and LATE-NC had moderate associations with Alzheimer's disease measures (eg, Braak stage ρ=0·31 [95% CI 0·20-0·42]). INTERPRETATION: Higher variability and more inconsistency in the measurement of vascular neuropathologies compared with the measurement of Alzheimer's disease neuropathological change suggests the development of new frameworks for the measurement of vascular neuropathologies might be helpful. Results highlight the complexity and multi-morbidity of the brain pathologies that underlie dementia in older adults and suggest that prevention efforts and treatments should be multifaceted. FUNDING: Gates Ventures.


Asunto(s)
Enfermedad de Alzheimer , Aterosclerosis , Angiopatía Amiloide Cerebral , Encefalitis Límbica , Masculino , Femenino , Humanos , Anciano , Anciano de 80 o más Años , Prevalencia , Autopsia , Estudios Transversales
9.
Brain Pathol ; 33(1): e13104, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35871544

RESUMEN

We describe an autosomal dominant, multi-generational, amyotrophic lateral sclerosis (ALS) pedigree in which disease co-segregates with a heterozygous p.Y374X nonsense mutation within TDP-43. Mislocalization of TDP-43 and formation of insoluble TDP-43-positive neuronal cytoplasmic inclusions is the hallmark pathology in >95% of ALS patients. Neuropathological examination of the single case for which CNS tissue was available indicated typical TDP-43 pathology within lower motor neurons, but classical TDP-43-positive inclusions were absent from motor cortex. The mutated allele is transcribed and translated in patient fibroblasts and motor cortex tissue, but overall TDP-43 protein expression is reduced compared to wild-type controls. Despite absence of TDP-43-positive inclusions we confirmed deficient TDP-43 splicing function within motor cortex tissue. Furthermore, urea fractionation and mass spectrometry of motor cortex tissue carrying the mutation revealed atypical TDP-43 protein species but not typical C-terminal fragments. We conclude that the p.Y374X mutation underpins a monogenic, fully penetrant form of ALS. Reduced expression of TDP-43 combined with atypical TDP-43 protein species and absent C-terminal fragments extends the molecular phenotypes associated with TDP-43 mutations and with ALS more broadly. Future work will need to include the findings from this pedigree in dissecting the mechanisms of TDP-43-mediated toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mutación , Linaje
10.
Transl Stroke Res ; 14(3): 383-396, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35639336

RESUMEN

Poststroke dementia (PSD) is associated with pathology in frontal brain regions, in particular dorsolateral prefrontal cortex (DLPFC) neurons and white matter, remote from the infarct. We hypothesised that PSD results from progressive DLPFC neuronal damage, associated with frontal white matter gliovascular unit (GVU) alterations. We investigated the transcriptomic profile of the neurons and white matter GVU cells previously implicated in pathology. Laser-capture microdissected neurons, astrocytes and endothelial cells were obtained from the Cognitive Function After Stroke cohort of control, PSD and poststroke non-dementia (PSND) human subjects. Gene expression was assessed using microarrays and pathway analysis to compare changes in PSD with controls and PSND. Neuronal findings were validated using NanoString technology and compared with those in the bilateral common carotid artery stenosis (BCAS) mouse model. Comparing changes in PSD compared to controls with changes in PSND compared to controls identified transcriptomic changes associated specifically with dementia. DLPFC neurons showed defects in energy production (tricarboxylic acid (TCA) cycle, adenosine triphosphate (ATP) binding and mitochondria), signalling and communication (MAPK signalling, Toll-like receptor signalling, endocytosis). Similar changes were identified in neurons isolated from BCAS mice. Neuronal findings accompanied by altered astrocyte communication and endothelium immune changes in the frontal white matter, suggesting GVU dysfunction. We propose a pathogenic model in PSD whereby neuronal changes are associated with frontal white matter GVU dysfunction leading to astrocyte failure in supporting neuronal circuits resulting in delayed cognitive decline associated with PSD. Therefore, targeting these processes could potentially ameliorate the dementia seen in PSD.


Asunto(s)
Accidente Cerebrovascular , Transcriptoma , Humanos , Animales , Ratones , Células Endoteliales/patología , Encéfalo/patología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología , Neuronas/patología
11.
Cell Rep ; 40(5): 111162, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926460

RESUMEN

Medulloblastoma is currently subclassified into distinct DNA methylation subgroups/subtypes with particular clinico-molecular features. Using RNA sequencing (RNA-seq) in large, well-annotated cohorts of medulloblastoma, we show that transcriptionally group 3 and group 4 medulloblastomas exist as intermediates on a bipolar continuum between archetypal group 3 and group 4 entities. Continuum position is prognostic, reflecting a propensity for specific DNA copy-number changes, and specific switches in isoform/enhancer usage and RNA editing. Examining single-cell RNA-seq (scRNA-seq) profiles, we show that intratumoral transcriptional heterogeneity along the continuum is limited in a subtype-dependent manner. By integrating with a human scRNA-seq reference atlas, we show that this continuum is mirrored by an equivalent continuum of transcriptional cell types in early fetal cerebellar development. We identify distinct developmental niches for all four major subgroups and link each to a common developmental antecedent. Our findings show a transcriptional continuum arising from oncogenic disruption of highly specific fetal cerebellar cell types, linked to almost every aspect of group 3/group 4 molecular biology and clinico-pathology.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Metilación de ADN/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patología
12.
Brain Pathol ; 32(6): e13101, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35748290

RESUMEN

With the hypothesis that perivascular microglia are involved as neuroinflammatory components of the gliovascular unit contributing to white matter hyperintensities on MRI and pathophysiology, we assessed their status in stroke survivors who develop dementia. Immunohistochemical and immunofluorescent methods were used to assess the distribution and quantification of total and perivascular microglial cell densities in 68 brains focusing on the frontal lobe WM and overlying neocortex in post-stroke dementia (PSD), post-stroke non-dementia (PSND) and similar age control subjects. We primarily used CD68 as a marker of phagocytic microglia, as well as other markers of microglia including Iba-1 and TMEM119, and the myeloid cell marker TREM2 to assess dementia-specific changes. We first noted greater total densities of CD68+ and TREM2+ cells per mm2 in the frontal WM compared to the overlying cortex across the stroke cases and controls (p = 0.001). PSD subjects showed increased percentage of activated perivascular CD68+ cells distinct from ramified or primed microglia in the WM (p < 0.05). However, there was no apparent change in perivascular TREM2+ cells. Total densities of TREM2+ cells were only ~10% of CD68+ cells but there was high degree of overlap (>70%) between them in both the WM and the cortex. CD68 and Iba-1 or CD68 and TMEM119 markers were colocalised by ~55%. Within the deep WM, ~30% of CD68+ cells were co-localised with fragments of degraded myelin basic protein. Among fragmented CD68+ cells in adjacent WM of PSD subjects, >80% of the cells expressed cleaved caspase-3. Our observations suggest although the overall repertoire of perivascular microglial cells is not changed in the parenchyma, PSD subjects accrue more perivascular-activated CD68+ microglia rather than TREM2+ cells. This implies there is a subset of CD68+ cells, which are responsible for the differential response in perivascular inflammation within the gliovascular unit of the deep WM.


Asunto(s)
Demencia Vascular , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Demencia Vascular/metabolismo , Microglía/metabolismo , Encéfalo , Accidente Cerebrovascular/metabolismo
13.
Acta Neuropathol ; 144(1): 27-44, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697880

RESUMEN

Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer's disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese-American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia-broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with "frequent" neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aß phase = 0 (lacking detectable Aß plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer's disease neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedades del Sistema Nervioso , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Amiloide , Autopsia , Proteínas de Unión al ADN , Humanos , Masculino , Placa Amiloide/patología
14.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682592

RESUMEN

(1) Background: Systemic infection is associated with increased neuroinflammation and accelerated cognitive decline in AD patients. Activated neutrophils produce neutrophil-derived microvesicles (NMV), which are internalised by human brain microvascular endothelial cells and increase their permeability in vitro, suggesting that NMV play a role in blood-brain barrier (BBB) integrity during infection. The current study investigated whether microRNA content of NMV from AD patients is significantly different compared to healthy controls and could impact cerebrovascular integrity. (2) Methods: Neutrophils isolated from peripheral blood samples of five AD and five healthy control donors without systemic infection were stimulated to produce NMV. MicroRNAs isolated from NMV were analysed by RNA-Seq, and online bioinformatic tools were used to identify significantly differentially expressed microRNAs in the NMV. Target and pathway analyses were performed to predict the impact of the candidate microRNAs on vascular integrity. (3) Results: There was no significant difference in either the number of neutrophils (p = 0.309) or the number of NMV (p = 0.3434) isolated from AD donors compared to control. However, 158 microRNAs were significantly dysregulated in AD NMV compared to controls, some of which were associated with BBB dysfunction, including miR-210, miR-20b-5p and miR-126-5p. Pathway analysis revealed numerous significantly affected pathways involved in regulating vascular integrity, including the TGFß and PDGFB pathways, as well as Hippo, IL-2 and DNA damage signalling. (4) Conclusions: NMV from AD patients contain miRNAs that may alter the integrity of the BBB and represent a novel neutrophil-mediated mechanism for BBB dysfunction in AD and the accelerated cognitive decline seen as a result of a systemic infection.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Humanos , MicroARNs/metabolismo , Neutrófilos/metabolismo , RNA-Seq
15.
Elife ; 112022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35014950

RESUMEN

Neurovascular coupling is a critical brain mechanism whereby changes to blood flow accompany localised neural activity. The breakdown of neurovascular coupling is linked to the development and progression of several neurological conditions including dementia. In this study, we examined cortical haemodynamics in mouse preparations that modelled Alzheimer's disease (J20-AD) and atherosclerosis (PCSK9-ATH) between 9 and 12 m of age. We report novel findings with atherosclerosis where neurovascular decline is characterised by significantly reduced blood volume, altered levels of oxyhaemoglobin and deoxyhaemoglobin, in addition to global neuroinflammation. In the comorbid mixed model (J20-PCSK9-MIX), we report a 3 x increase in hippocampal amyloid-beta plaques. A key finding was that cortical spreading depression (CSD) due to electrode insertion into the brain was worse in the diseased animals and led to a prolonged period of hypoxia. These findings suggest that systemic atherosclerosis can be detrimental to neurovascular health and that having cardiovascular comorbidities can exacerbate pre-existing Alzheimer's-related amyloid-plaques.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Aterosclerosis/fisiopatología , Acoplamiento Neurovascular/fisiología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Aterosclerosis/sangre , Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Depresión de Propagación Cortical , Modelos Animales de Enfermedad , Hemodinámica , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Br J Neurosurg ; 36(5): 643-646, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30475069

RESUMEN

A 65 year-old lady with metastatic breast cancer presented with pituitary apoplexy. Following surgery, histopathology confirmed metastatic breast carcinoma into a gonadotroph cell adenoma of the pituitary. Tumours that metastasise to a normal pituitary gland are unusual. More so, such neoplasm-to-neoplasm metastasis is extremely rare. This is, as far as we are aware, the first description of a metastasis into a gonadotroph cell pituitary adenoma presenting as apoplexy.


Asunto(s)
Adenoma , Neoplasias de la Mama , Gonadotrofos , Apoplejia Hipofisaria , Neoplasias Hipofisarias , Femenino , Humanos , Anciano , Apoplejia Hipofisaria/complicaciones , Neoplasias Hipofisarias/complicaciones , Gonadotrofos/patología , Adenoma/complicaciones , Adenoma/diagnóstico por imagen , Adenoma/cirugía , Imagen por Resonancia Magnética , Hipófisis/cirugía , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/patología
17.
Neuro Oncol ; 24(1): 153-165, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34272868

RESUMEN

BACKGROUND: Less than 5% of medulloblastoma (MB) patients survive following failure of contemporary radiation-based therapies. Understanding the molecular drivers of medulloblastoma relapse (rMB) will be essential to improve outcomes. Initial genome-wide investigations have suggested significant genetic divergence of the relapsed disease. METHODS: We undertook large-scale integrated characterization of the molecular features of rMB-molecular subgroup, novel subtypes, copy number variation (CNV), and driver gene mutation. 119 rMBs were assessed in comparison with their paired diagnostic samples (n = 107), alongside an independent reference cohort sampled at diagnosis (n = 282). rMB events were investigated for association with outcome post-relapse in clinically annotated patients (n = 54). RESULTS: Significant genetic evolution occurred over disease-course; 40% of putative rMB drivers emerged at relapse and differed significantly between molecular subgroups. Non-infant MBSHH displayed significantly more chromosomal CNVs at relapse (TP53 mutation-associated). Relapsed MBGroup4 demonstrated the greatest genetic divergence, enriched for targetable (eg, CDK amplifications) and novel (eg, USH2A mutations) events. Importantly, many hallmark features of MB were stable over time; novel subtypes (>90% of tumors) and established genetic drivers (eg, SHH/WNT/P53 mutations; 60% of rMB events) were maintained from diagnosis. Critically, acquired and maintained rMB events converged on targetable pathways which were significantly enriched at relapse (eg, DNA damage signaling) and specific events (eg, 3p loss) predicted survival post-relapse. CONCLUSIONS: rMB is characterised by the emergence of novel events and pathways, in concert with selective maintenance of established genetic drivers. Together, these define the actionable genetic landscape of rMB and provide a basis for improved clinical management and development of stratified therapeutics, across disease-course.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Variaciones en el Número de Copia de ADN , Humanos , Meduloblastoma/genética , Mutación , Recurrencia Local de Neoplasia/genética
18.
J Neurochem ; 160(4): 434-453, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767256

RESUMEN

Although controversial, the amyloid cascade hypothesis remains central to the Alzheimer's disease (AD) field and posits amyloid-beta (Aß) as the central factor initiating disease onset. In recent years, there has been an increase in emphasis on studying the role of low molecular weight aggregates, such as oligomers, which are suggested to be more neurotoxic than fibrillary Aß. Other Aß isoforms, such as truncated Aß, have also been implicated in disease. However, developing a clear understanding of AD pathogenesis has been hampered by the complexity of Aß biochemistry in vitro and in vivo. This review explores factors contributing to the lack of consistency in experimental approaches taken to model Aß aggregation and toxicity and provides an overview of the different techniques available to analyse Aß, such as electron and atomic force microscopy, nuclear magnetic resonance spectroscopy, dye-based assays, size exclusion chromatography, mass spectrometry and SDS-PAGE. The review also explores how different types of Aß can influence Aß aggregation and toxicity, leading to variation in experimental outcomes, further highlighting the need for standardisation in Aß preparations and methods used in current research.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Animales , Humanos
19.
J Neuroinflammation ; 18(1): 306, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34963475

RESUMEN

BACKGROUND: Pathological interactions between ß-amyloid (Aß) and tau drive synapse loss and cognitive decline in Alzheimer's disease (AD). Reactive astrocytes, displaying altered functions, are also a prominent feature of AD brain. This large and heterogeneous population of cells are increasingly recognised as contributing to early phases of disease. However, the contribution of astrocytes to Aß-induced synaptotoxicity in AD is not well understood. METHODS: We stimulated mouse and human astrocytes with conditioned medium containing concentrations and species of human Aß that mimic those in human AD brain. Medium from stimulated astrocytes was collected and immunodepleted of Aß before being added to naïve rodent or human neuron cultures. A cytokine, identified in unbiased screens of stimulated astrocyte media and in postmortem human AD brain lysates was also applied to neurons, including those pre-treated with a chemokine receptor antagonist. Tau mislocalisation, synaptic markers and dendritic spine numbers were measured in cultured neurons and organotypic brain slice cultures. RESULTS: We found that conditioned medium from stimulated astrocytes induces exaggerated synaptotoxicity that is recapitulated following spiking of neuron culture medium with recombinant C-X-C motif chemokine ligand-1 (CXCL1), a chemokine upregulated in AD brain. Antagonism of neuronal C-X-C motif chemokine receptor 2 (CXCR2) prevented synaptotoxicity in response to CXCL1 and Aß-stimulated astrocyte secretions. CONCLUSIONS: Our data indicate that astrocytes exacerbate the synaptotoxic effects of Aß via interactions of astrocytic CXCL1 and neuronal CXCR2 receptors, highlighting this chemokine-receptor pair as a novel target for therapeutic intervention in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/toxicidad , Astrocitos/patología , Quimiocina CXCL1/antagonistas & inhibidores , Quimiocina CXCL1/química , Sinapsis/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Medios de Cultivo Condicionados , Espinas Dendríticas/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neuronas/efectos de los fármacos , Receptores de Interleucina-8B/antagonistas & inhibidores , Proteínas tau/química , Proteínas tau/toxicidad
20.
Brain Commun ; 3(4): fcab225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671726

RESUMEN

Despite many reported associations, the direct cause of neurodegeneration responsible for cognitive loss in Alzheimer's disease and some other common dementias is not known. The normal human plasma protein, serum amyloid P component, a constituent of all human fibrillar amyloid deposits and present on most neurofibrillary tangles, is cytotoxic for cerebral neurones in vitro and in experimental animals in vivo. The neocortical content of serum amyloid P component was immunoassayed in 157 subjects aged 65 or more with known dementia status at death, in the large scale, population-representative, brain donor cohort of the Cognitive Function and Ageing Study, which avoids the biases inherent in studies of predefined clinico-pathological groups. The serum amyloid P component values were significantly higher in individuals with dementia, independent of serum albumin content measured as a control for plasma in the cortex samples. The odds ratio for dementia at death in the high serum amyloid P component tertile was 5.24 (95% confidence interval 1.79-15.29) and was independent of Braak tangle stages and Thal amyloid-ß phases of neuropathological severity. The strong and specific association of higher brain content of serum amyloid P component with dementia, independent of neuropathology, is consistent with a pathogenetic role in dementia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...