Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Blood ; 138(8): 625-636, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34436525

RESUMEN

Nongenetic heterogeneity, or gene expression stochasticity, is an important source of variability in biological systems. With the advent and improvement of single molecule resolution technologies, it has been shown that transcription dynamics and resultant transcript number fluctuations generate significant cell-to-cell variability that has important biological effects and may contribute substantially to both tissue homeostasis and disease. In this respect, the pathophysiology of stem cell-derived malignancies such as acute myeloid leukemia and myelodysplastic syndromes, which has historically been studied at the ensemble level, may require reevaluation. To that end, it is our aim in this review to highlight the results of recent single-molecule, biophysical, and systems studies of gene expression dynamics, with the explicit purpose of demonstrating how the insights from these basic science studies may help inform and progress the field of leukemia biology and, ultimately, research into novel therapies.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Síndromes Mielodisplásicos/terapia
3.
Cancer Cell ; 39(4): 529-547.e7, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33667384

RESUMEN

MDMX is overexpressed in the vast majority of patients with acute myeloid leukemia (AML). We report that MDMX overexpression increases preleukemic stem cell (pre-LSC) number and competitive advantage. Utilizing five newly generated murine models, we found that MDMX overexpression triggers progression of multiple chronic/asymptomatic preleukemic conditions to overt AML. Transcriptomic and proteomic studies revealed that MDMX overexpression exerts this function, unexpectedly, through activation of Wnt/ß-Catenin signaling in pre-LSCs. Mechanistically, MDMX binds CK1α and leads to accumulation of ß-Catenin in a p53-independent manner. Wnt/ß-Catenin inhibitors reverse MDMX-induced pre-LSC properties, and synergize with MDMX-p53 inhibitors. Wnt/ß-Catenin signaling correlates with MDMX expression in patients with preleukemic myelodysplastic syndromes and is associated with increased risk of progression to AML. Our work identifies MDMX overexpression as a pervasive preleukemic-to-AML transition mechanism in different genetically driven disease subtypes, and reveals Wnt/ß-Catenin as a non-canonical MDMX-driven pathway with therapeutic potential for progression prevention and cancer interception.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Ratones , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Proteómica/métodos , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
4.
Nature ; 583(7816): 431-436, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32581360

RESUMEN

Molecular noise is a natural phenomenon that is inherent to all biological systems1,2. How stochastic processes give rise to the robust outcomes that support tissue homeostasis remains unclear. Here we use single-molecule RNA fluorescent in situ hybridization (smFISH) on mouse stem cells derived from haematopoietic tissue to measure the transcription dynamics of three key genes that encode transcription factors: PU.1 (also known as Spi1), Gata1 and Gata2. We find that infrequent, stochastic bursts of transcription result in the co-expression of these antagonistic transcription factors in the majority of haematopoietic stem and progenitor cells. Moreover, by pairing smFISH with time-lapse microscopy and the analysis of pedigrees, we find that although individual stem-cell clones produce descendants that are in transcriptionally related states-akin to a transcriptional priming phenomenon-the underlying transition dynamics between states are best captured by stochastic and reversible models. As such, a stochastic process can produce cellular behaviours that may be incorrectly inferred to have arisen from deterministic dynamics. We propose a model whereby the intrinsic stochasticity of gene expression facilitates, rather than impedes, the concomitant maintenance of transcriptional plasticity and stem cell robustness.


Asunto(s)
Células Madre Adultas/metabolismo , Regulación de la Expresión Génica , Imagen Individual de Molécula , Transcripción Genética/genética , Células Madre Adultas/citología , Animales , Células Cultivadas , Células Clonales/citología , Células Clonales/metabolismo , Femenino , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA2/genética , Redes Reguladoras de Genes , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Linaje , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Procesos Estocásticos , Transactivadores/genética
5.
Proc Natl Acad Sci U S A ; 117(25): 14251-14258, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513732

RESUMEN

Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Animales , Epigenómica , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación , Metiltransferasas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Represoras/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(36): 17841-17847, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31431533

RESUMEN

Pu.1 is an ETS family transcription factor (TF) that plays critical roles in erythroid progenitors by promoting proliferation and blocking terminal differentiation. However, the mechanisms controlling expression and down-regulation of Pu.1 during early erythropoiesis have not been defined. In this study, we identify the actions of Runx1 and Pu.1 itself at the Pu.1 gene Upstream Regulatory Element (URE) as major regulators of Pu.1 expression in Burst-Forming Unit erythrocytes (BFUe). During early erythropoiesis, Runx1 and Pu.1 levels decline, and chromatin accessibility at the URE is lost. Ectopic expression of Runx1 or Pu.1, both of which bind the URE, prevents Pu.1 down-regulation and blocks terminal erythroid differentiation, resulting in extensive ex vivo proliferation and immortalization of erythroid progenitors. Ectopic expression of Runx1 in BFUe lacking a URE fails to block terminal erythroid differentiation. Thus, Runx1, acting at the URE, and Pu.1 itself directly regulate Pu.1 levels in erythroid cells, and loss of both factors is critical for Pu.1 down-regulation during terminal differentiation. The molecular mechanism of URE inactivation in erythroid cells through loss of TF binding represents a distinct pattern of Pu.1 regulation from those described in other hematopoietic cell types such as T cells which down-regulate Pu.1 through active repression. The importance of down-regulation of Runx1 and Pu.1 in erythropoiesis is further supported by genome-wide analyses showing that their DNA-binding motifs are highly overrepresented in regions that lose chromatin accessibility during early erythroid development.


Asunto(s)
Diferenciación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Animales , Cromatina/genética , Cromatina/metabolismo , Eritropoyesis/genética , Ratones , Células RAW 264.7 , Elementos de Respuesta , Transcripción Genética
7.
J Exp Med ; 215(8): 2211-2226, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30045946

RESUMEN

Tle/Groucho proteins are transcriptional corepressors interacting with Tcf/Lef and Runx transcription factors, but their physiological roles in T cell development remain unknown. Conditional targeting of Tle1, Tle3 and Tle4 revealed gene dose-dependent requirements for Tle proteins in CD8+ lineage cells. Upon ablating all three Tle proteins, generation of CD8+ T cells was greatly diminished, largely owing to redirection of MHC-I-selected thymocytes to CD4+ lineage; the remaining CD8-positive T cells showed aberrant up-regulation of CD4+ lineage-associated genes including Cd4, Thpok, St8sia6, and Foxp3 Mechanistically, Tle3 bound to Runx-occupied Thpok silencer, in post-selection double-positive thymocytes to prevent excessive ThPOK induction and in mature CD8+ T cells to silence Thpok expression. Tle3 also bound to Tcf1-occupied sites in a few CD4+ lineage-associated genes, including Cd4 silencer and St8sia6 introns, to repress their expression in mature CD8+ T cells. These findings indicate that Tle corepressors are differentially partitioned to Runx and Tcf/Lef complexes to instruct CD8+ lineage choice and cooperatively establish CD8+ T cell identity, respectively.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linaje de la Célula , Proteínas Co-Represoras/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Eliminación de Gen , Ratones Endogámicos C57BL , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
9.
Sci Transl Med ; 10(436)2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643228

RESUMEN

The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these interactions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled α-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell-enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Péptidos/uso terapéutico , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adulto , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Mutación/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Adulto Joven
10.
Cancer Cell ; 31(3): 307-308, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28292433

RESUMEN

Acute megakaryoblastic leukemia (AMKL) is a heterogeneous disease with a relatively poorly understood pathogenesis. In this issue of Cancer Cell, Thirant and colleagues systematically examine unique transcriptional and functional effects of ETO2-GLIS2, an oncogenic fusion protein frequently encountered in AMKL, and elucidate a therapeutic vulnerability in this poor-prognosis leukemia.


Asunto(s)
Leucemia Megacarioblástica Aguda/tratamiento farmacológico , Factores de Transcripción/uso terapéutico , Humanos , Proteínas de Fusión Oncogénica/metabolismo
11.
Front Oncol ; 6: 187, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27597933

RESUMEN

In recent years, advances in next-generation sequencing (NGS) technology have provided the opportunity to detect putative genetic drivers of disease, particularly cancers, with very high sensitivity. This knowledge has substantially improved our understanding of tumor pathogenesis. In hematological malignancies such as acute myeloid leukemia and myelodysplastic syndromes, pioneering work combining multi-parameter flow cytometry and targeted resequencing in leukemia have clearly shown that different classes of mutations appear to be acquired in particular sequences along the hematopoietic differentiation hierarchy. Moreover, as these mutations can be found in "normal" cells recovered during remission and can be detected at relapse, there is strong evidence for the existence of "pre-leukemic" stem cells (pre-LSC). These cells, while phenotypically normal by flow cytometry, morphology, and functional studies, are speculated to be molecularly poised to transform owing to a limited number of predisposing mutations. Identifying these "pre-leukemic" mutations and how they propagate a pre-malignant state has important implications for understanding the etiology of these disorders and for the development of novel therapeutics. NGS studies have found a substantial enrichment for mutations in epigenetic/chromatin remodeling regulators in pre-LSC, and elegant genetic models have confirmed that these mutations can predispose to a variety of hematological malignancies. In this review, we will discuss the current understanding of pre-leukemic biology in myeloid malignancies, and how mutations in two key epigenetic regulators, DNMT3A and TET2, may contribute to disease pathogenesis.

12.
PLoS One ; 9(8): e105557, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25153823

RESUMEN

Hematopoiesis is a complex process that relies on various cell types, signaling pathways, transcription factors and a specific niche. The integration of these various components is of critical importance to normal blood development, as deregulation of these may lead to bone marrow failure or malignancy. Tle4, a transcriptional corepressor, acts as a tumor suppressor gene in a subset of acute myeloid leukemia, yet little is known about its function in normal and malignant hematopoiesis or in mammalian development. We report here that Tle4 knockout mice are runted and die at around four weeks with defects in bone development and BM aplasia. By two weeks of age, Tle4 knockout mice exhibit leukocytopenia, B cell lymphopenia, and significant reductions in hematopoietic stem and progenitor cells. Tle4 deficient hematopoietic stem cells are intrinsically defective in B lymphopoiesis and exhaust upon stress, such as serial transplantation. In the absence of Tle4 there is a profound decrease in bone mineralization. In addition, Tle4 knockout stromal cells are defective at maintaining wild-type hematopoietic stem cell function in vitro. In summary, we illustrate a novel and essential role for Tle4 in the extrinsic and intrinsic regulation of hematopoiesis and in bone development.


Asunto(s)
Desarrollo Óseo/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas Represoras/genética , Células del Estroma/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Ratones , Ratones Noqueados , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...