Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 62(15): 5984-6002, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37000941

RESUMEN

The observation of single-molecule magnetism in transition-metal complexes relies on the phenomenon of zero-field splitting (ZFS), which arises from the interplay of spin-orbit coupling (SOC) with ligand-field-induced symmetry lowering. Previous studies have demonstrated that the magnitude of ZFS in complexes with 3d metal ions is sometimes enhanced through coordination with heavy halide ligands (Br and I) that possess large free-atom SOC constants. In this study, we systematically probe this "heavy-atom effect" in high-spin cobalt(II)-halide complexes supported by substituted hydrotris(pyrazol-1-yl)borate ligands (TptBu,Me and TpPh,Me). Two series of complexes were prepared: [CoIIX(TptBu,Me)] (1-X; X = F, Cl, Br, and I) and [CoIIX(TpPh,Me)(HpzPh,Me)] (2-X; X = Cl, Br, and I), where HpzPh,Me is a monodentate pyrazole ligand. Examination with dc magnetometry, high-frequency and -field electron paramagnetic resonance, and far-infrared magnetic spectroscopy yielded axial (D) and rhombic (E) ZFS parameters for each complex. With the exception of 1-F, complexes in the four-coordinate 1-X series exhibit positive D-values between 10 and 13 cm-1, with no dependence on halide size. The five-coordinate 2-X series exhibit large and negative D-values between -60 and -90 cm-1. Interpretation of the magnetic parameters with the aid of ligand-field theory and ab initio calculations elucidated the roles of molecular geometry, ligand-field effects, and metal-ligand covalency in controlling the magnitude of ZFS in cobalt-halide complexes.

2.
J Am Chem Soc ; 145(1): 58-69, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36535031

RESUMEN

Although microbial genomes harbor an abundance of biosynthetic gene clusters, there remain substantial technological gaps that impair the direct correlation of newly discovered gene clusters and their corresponding secondary metabolite products. As an example of one approach designed to minimize or bridge such gaps, we employed hierarchical clustering analysis and principal component analysis (hcapca, whose sole input is MS data) to prioritize 109 marine Micromonospora strains and ultimately identify novel strain WMMB482 as a candidate for in-depth "metabologenomics" analysis following its prioritization. Highlighting the power of current MS-based technologies, not only did hcapca enable the discovery of one new, nonribosomal peptide bearing an incredible diversity of unique functional groups, but metabolomics for WMMB482 unveiled 16 additional congeners via the application of Global Natural Product Social molecular networking (GNPS), herein named ecteinamines A-Q (1-17). The ecteinamines possess an unprecedented skeleton housing a host of uncommon functionalities including a menaquinone pathway-derived 2-naphthoate moiety, 4-methyloxazoline, the first example of a naturally occurring Ψ[CH2NH] "reduced amide", a methylsulfinyl moiety, and a d-cysteinyl residue that appears to derive from a unique noncanonical epimerase domain. Extensive in silico analysis of the ecteinamine (ect) biosynthetic gene cluster and stable isotope-feeding experiments helped illuminate the novel enzymology driving ecteinamine assembly as well the role of cluster collaborations or "duets" in producing such structurally complex agents. Finally, ecteinamines were found to bind nickel, cobalt, zinc, and copper, suggesting a possible biological role as broad-spectrum metallophores.


Asunto(s)
Productos Biológicos , Micromonospora , Micromonospora/genética , Genómica , Metabolómica , Péptidos/metabolismo , Familia de Multigenes , Productos Biológicos/metabolismo
3.
Inorg Chem ; 61(38): 15058-15069, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36094078

RESUMEN

Understanding the fundamental properties governing metal-metal interactions is crucial to understanding the electronic structure and thereby applications of multimetallic systems in catalysis, material science, and magnetism. One such property that is relatively underexplored within multimetallic systems is metal-metal bond polarity, parameterized by the electronegativities (χ) of the metal atoms involved in the bond. In heterobimetallic systems, metal-metal bond polarity is a function of the donor-acceptor (Δχ) interactions of the two bonded metal atoms, with electropositive early transition metals acting as electron acceptors and electronegative late transition metals acting as electron donors. We show in this work, through the preparation and systematic study of a series of Mo2M(dpa)4(OTf)2 (M = Cr, Mn, Fe, Co, and Ni; dpa = 2,2'-dipyridylamide; OTf = trifluoromethanesulfonate) heterometallic extended metal atom chain (HEMAC) complexes that this expected trend in χ can be reversed. Physical characterization via single-crystal X-ray diffraction, magnetometry, and spectroscopic methods as well as electronic structure calculations supports the presence of a σ symmetry 3c/3e- bond that is delocalized across the entire metal-atom chain and forms the basis of the heterometallic Mo2-M interaction. The delocalized 3c/3e- interaction is discussed within the context of the analogous 3c/3e- π bonding in the vinoxy radical, CH2CHO. The vinoxy comparison establishes three predictions for the σ symmetry 3c/3e- bond in HEMACS: (1) an umpolung effect that causes the Mo-M interactions to become more covalent as Δχ increases, (2) distortion of the σ bonding and non-bonding orbitals to emphasize Mo-M bonding and de-emphasize Mo-Mo bonding, and (3) an increase in Mo spin population with increasing Mo-M covalency. In agreement with these predictions, we find that the Mo2···M covalency increases with increasing Δχ of the Mo and M atoms (ΔχMo-M increases as M = Cr < Mn < Fe < Co < Ni), an umpolung of the trend predicted in the absence of σ delocalization. We attribute the observed trend in covalency to the decreased energic differential (ΔE) between the heterometal dz2 orbital and the σ bonding molecular orbital of the Mo2 quadruple bond, which serves as an energetically stable, "ligand"-like electron-pair donor to the heterometal ion acceptor. As M is changed from Cr to Ni, the σ bonding and nonbonding orbitals do indeed distort as anticipated, and the spin population of the outer Mo group is increased by at least a factor of 2. These findings provide a predictive framework for multimetallic compounds and advance the current understanding of the electronic structures of molecular heteromultimetallic systems, which can be extrapolated to applications in the context of mixed-metal surface catalysis and multimetallic proteins.

4.
ACS Omega ; 7(8): 7257-7277, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35252716

RESUMEN

A green and optimized protocol has been developed for the preparation of symmetric 1,7-bis(aryl)-1,6-heptadiene-3,5-diones and asymmetric 2-aryl-6-arylidenecyclohexanones with modified substrate scope and good functional group tolerance. Syntheses proceed smoothly under solvent-free conditions, providing moderate to excellent product yields with a minimal workup procedure. Control experiments, spectroscopic, and computational studies support a mechanism involving the boron-assisted in situ generation of imine intermediates. Crystal structures of three curcuminoids and isolated mechanistic intermediates are reported. The data provide insight for the further development of solvent-free protocols toward diverse curcumin derivatives in the fields of pharmaceutical and synthetic chemistries.

5.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 8): 1336-1344, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844025

RESUMEN

Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-di-thione (SNS), isoindoline-1,3-di-thione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-µ-iodido-bis-[(aceto-nitrile-κN)(6-sulfanylidenepiperidin-2-one-κS)copper(I)], [Cu2I2(CH3CN)2(C5H7NOS)2] (I), bis-(aceto-nitrile-κN)tetra-µ3-iodido-bis-(6-sulfanylidenepiperidin-2-one-κS)-tetra-hedro-tetra-copper(I), [Cu4I4(CH3CN)4(C5H7NOS)4] (II), catena-poly[[(µ-6-sulfanylidenepiperidin-2-one-κ2 O:S)copper(I)]-µ3-iodido], [CuI(C5H7NOS)] n (III), poly[[(piperidine-2,6-di-thione-κS)copper(I)]-µ3-iodido], [CuI(C5H7NS2)] n (IV), and poly[[(µ-isoindoline-1,3-di-thione-κ2 S:S)copper(I)]-µ3-iodido], [CuI(C8H5NS2)] n (V). Compounds I and II crystallize as discrete dimeric and tetra-meric complexes, whereas III, IV, and V crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexa-gonal [Cu3I3] structure that is not supported by bridging ligands. Structures I, II, and IV display weak to moderately strong Cu⋯Cu cuprophilic inter-actions [Cu⋯Cu inter-nuclear distances range between 2.5803 (10) and 2.8485 (14) Å]. All structures except III display weak hydrogen-bonding inter-actions between the N-H of the ligand and the µ2 and µ3-I- atoms. Structure III contains classical N-H⋯O inter-actions between the SNO ligands that connect the mol-ecules in a three-dimensional framework. Complex V features π-π stacking inter-actions between the aryl rings of the SNS6 ligands within the same polymeric sheet. In structure IV, there were three partially occupied solvent mol-ecules of di-chloro-methane and one partially occupied mol-ecule of aceto-nitrile present in the asymmetric unit. The SQUEEZE routine [Spek (2015 ▸). Acta Cryst. C71, 9-18] was used to correct the diffraction data for diffuse scattering effects and to identify the solvent mol-ecules. The given chemical formula and other crystal data do not take into account the solvent mol-ecules.

6.
J Phys Chem Lett ; 11(16): 6551-6559, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32700916

RESUMEN

Layered two-dimensional Ruddlesden-Popper (RP) halide perovskites are an intriguing class of semiconductors being explored for their linear and nonlinear optical and ferroelectric properties. Second harmonic generation (SHG) is commonly used to screen for noncentrosymmetric and ferroelectric materials. However, SHG measurements of perovskites can be obscured by their intense multiphoton photoluminescence (mPL). Here, we apply multidimensional harmonic generation as a method to eliminate the complications from mPL. By scanning and correlating both excitation and emission frequencies, we unambiguously assess whether a material supports SHG by examining if an emission feature scales as twice the excitation frequency. Measurements of a series of n = 2, 3 RP perovskites reveal that, contrary to previous belief, n-butylammonium (BA) RP perovskites are not SHG-active and thus centrosymmetric, but RP perovskites with phenylethylammonium (PEA) and 2-thiophenemethylammonium (TPMA) spacer cations display SHG. This work establishes multidimensional harmonic generation as a definitive method to measure SHG in halide perovskites.

7.
Materials (Basel) ; 12(8)2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31013868

RESUMEN

The structures of three tetramethylammonium cyanocuprate(I) 3D networks [NMe4]2[Cu(CN)2]2•0.25H2O (1), [NMe4][Cu3(CN)4] (2), and [NMe4][Cu2(CN)3] (3), (Me4N = tetramethylammonium), and the photophysics of 1 and 2 are reported. These complexes are prepared by combining aqueous solutions of the simple salts tetramethylammonium chloride and potassium dicyanocuprate. Single-crystal X-ray diffraction analysis of complex 1 reveals {Cu2(CN)2(µ2-CN)4} rhomboids crosslinked by cyano ligands and D3h {Cu(CN)3} metal clusters into a 3D coordination polymer, while 2 features independent 2D layers of fused hexagonal {Cu8(CN)8} rings where two Cu(I) centers reside in a linear C∞v coordination sphere. Metallophilic interactions are observed in 1 as close Cu⋯Cu distances, but are noticeably absent in 2. Complex 3 is a simple honeycomb sheet composed of trigonal planar Cu(I) centers with no Cu…Cu interactions. Temperature and time-dependent luminescence of 1 and 2 have been performed between 298 K and 78 K and demonstrate that 1 is a dual singlet/triplet emitter at low temperatures while 2 is a triplet-only emitter. DFT and TD-DFT calculations were used to help interpret the experimental findings. Optical memory experiments show that 1 and 2 are both optical memory active. These complexes undergo a reduction of emission intensity upon laser irradiation at 255 nm although this loss is much faster in 2. The loss of emission intensity is reversible in both cases by applying heat to the sample. We propose a light-induced electron transfer mechanism for the optical memory behavior observed.

8.
ACS Omega ; 3(11): 15281-15292, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458189

RESUMEN

The reaction of copper(I) iodide (CuI) and N-alkyl pyridinium (RPy+, R = H, Me, Et, n-propyl = Pr, n-butyl = Bu, n-pentyl = Pn, and n-hexyl = Hx) or N-butyl-3-substituted pyridinium (N-Bu-3-PyX+, X = I, Br, Cl, CN, and OMe) iodide salts yielded pyridinium iodocuprate(I) salts. Crystal structures of iodocuprate ions coupled with RPy+ include {Cu3I6 3-} n (R = H), {Cu2I3 -} n (R = Me), {Cu3I4 -} n (R = Et), {Cu6I8 2-} n (R = Pr), and {Cu5I7 2-} n (R = Bu, Pn, Hx). The [N-Bu-3-PyX]+ ions were typically paired with the 1-D chain {Cu5I7 2-} n . Diffuse reflectance spectroscopy performed on the [N-Bu-3-PyX]+ iodocuprate salts revealed that increasing the electron withdrawing capacity of the [N-Bu-3-PyX]+ system reduced the absorption edge of the iodocuprate salt. Variable temperature emission spectra of several [N-Bu-3-PyX]+ compounds revealed two emission peaks, one consistent with a cluster-centered halide to metal charge transfer and the other consistent with an intermolecular mixed halide/metal charge transfer to the organic cation. The emission intensity and emission wavelength of the mixed halide/metal to cation charge transfer depends on the organic cation substitution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...