Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncogene ; 36(34): 4843-4858, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28414310

RESUMEN

High CD44 expression is associated with enhanced malignant potential in esophageal squamous cell carcinoma (ESCC), among the deadliest of all human carcinomas. Although alterations in autophagy and CD44 expression are associated with poor patient outcomes in various cancer types, the relationship between autophagy and cells with high CD44 expression remains incompletely understood. In transformed oesophageal keratinocytes, CD44Low-CD24High (CD44L) cells give rise to CD44High-CD24-/Low (CD44H) cells via epithelial-mesenchymal transition (EMT) in response to transforming growth factor (TGF)-ß. We couple patient samples and xenotransplantation studies with this tractable in vitro system of CD44L to CD44H cell conversion to investigate the functional role of autophagy in generation of cells with high CD44 expression. We report that high expression of the autophagy marker cleaved LC3 expression correlates with poor clinical outcome in ESCC. In ESCC xenograft tumours, pharmacological autophagy inhibition with chloroquine derivatives depletes cells with high CD44 expression while promoting oxidative stress. Autophagic flux impairment during EMT-mediated CD44L to CD44H cell conversion in vitro induces mitochondrial dysfunction, oxidative stress and cell death. During CD44H cell generation, transformed keratinocytes display evidence of mitophagy, including mitochondrial fragmentation, decreased mitochondrial content and mitochondrial translocation of Parkin, essential in mitophagy. RNA interference-mediated Parkin depletion attenuates CD44H cell generation. These data suggest that autophagy facilitates EMT-mediated CD44H generation via modulation of redox homeostasis and Parkin-dependent mitochondrial clearance. This is the first report to implicate mitophagy in regulation of tumour cells with high CD44 expression, representing a potential novel therapeutic avenue in cancers where EMT and CD44H cells have been implicated, including ESCC.


Asunto(s)
Autofagia/fisiología , Receptores de Hialuranos/metabolismo , Mitocondrias/fisiología , Estrés Oxidativo/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Humanos , Queratinocitos/metabolismo , Queratinocitos/fisiología , Mitocondrias/metabolismo , Oxidación-Reducción , Interferencia de ARN/fisiología , Factor de Crecimiento Transformador beta/metabolismo
2.
Oncogene ; 35(12): 1585-95, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26148236

RESUMEN

Defects in mitochondrial oxidative phosphorylation complexes, altered bioenergetics and metabolic shift are often seen in cancers. Here we show a role for the dysfunction of the electron transport chain component cytochrome c oxidase (CcO) in cancer progression. We show that genetic silencing of the CcO complex by shRNA expression and loss of CcO activity in multiple cell types from the mouse and human sources resulted in metabolic shift to glycolysis, loss of anchorage-dependent growth and acquired invasive phenotypes. Disruption of the CcO complex caused loss of transmembrane potential and induction of Ca2+/Calcineurin-mediated retrograde signaling. Propagation of this signaling includes activation of PI3-kinase, IGF1R and Akt, Ca2(+)-sensitive transcription factors and also TGFß1, MMP16 and periostin, which are involved in oncogenic progression. Whole-genome expression analysis showed the upregulation of genes involved in cell signaling, extracellular matrix interactions, cell morphogenesis, cell motility and migration. The transcription profiles reveal extensive similarity to retrograde signaling initiated by partial mitochondrial DNA depletion, although distinct differences are observed in signaling induced by CcO dysfunction. The possible CcO dysfunction as a biomarker for cancer progression was supported by data showing that esophageal tumors from human patients show reduced CcO subunits IVi1 and Vb in regions that were previously shown to be the hypoxic core of the tumors. Our results show that mitochondrial electron transport chain defect initiates a retrograde signaling. These results suggest that a defect in the CcO complex can potentially induce tumor progression.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Animales , Línea Celular , Complejo IV de Transporte de Electrones/genética , Silenciador del Gen , Ratones , Estrés Oxidativo , Transducción de Señal
3.
Oncogene ; 34(41): 5229-39, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25659582

RESUMEN

Epithelial-mesenchymal transition (EMT) promotes cancer cell invasion, metastasis and treatment failure. EMT may be activated in cancer cells by reactive oxygen species (ROS). EMT may promote conversion of a subset of cancer cells from a CD44(low)-CD24(high) (CD44L) epithelial phenotype to a CD44(high)-CD24(-/low) (CD44H) mesenchymal phenotype, the latter associated with increased malignant properties of cancer cells. ROS are required for cells undergoing EMT, although excessive ROS may induce cell death or senescence; however, little is known as to how cellular antioxidant capabilities may be regulated during EMT. Mitochondrial superoxide dismutase 2 (SOD2) is frequently overexpressed in oral and esophageal cancers. Here, we investigate mechanisms of SOD2 transcriptional regulation in EMT, as well as the functional role of this antioxidant in EMT. Using well-characterized genetically engineered oral and esophageal human epithelial cell lines coupled with RNA interference and flow cytometric approaches, we find that transforming growth factor (TGF)-ß stimulates EMT, resulting in conversion of CD44L to CD44H cells, the latter of which display SOD2 upregulation. SOD2 induction in transformed keratinocytes was concurrent with suppression of TGF-ß-mediated induction of both ROS and senescence. SOD2 gene expression appeared to be transcriptionally regulated by NF-κB and ZEB2, but not ZEB1. Moreover, SOD2-mediated antioxidant activity may restrict conversion of CD44L cells to CD44H cells at the early stages of EMT. These data provide novel mechanistic insights into the dynamic expression of SOD2 during EMT. In addition, we delineate a functional role for SOD2 in EMT via the influence of this antioxidant upon distinct CD44L and CD44H subsets of cancer cells that have been implicated in oral and esophageal tumor biology.


Asunto(s)
Transición Epitelial-Mesenquimal , Superóxido Dismutasa/fisiología , Línea Celular , Regulación Enzimológica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Receptores de Hialuranos , Mitocondrias/enzimología , FN-kappa B/metabolismo , Proteínas Represoras/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
4.
Oncogene ; 34(18): 2347-59, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24931169

RESUMEN

Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor-suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor-suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated ß-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16(INK4A)-Rb pathway. Loss of p16(INK4A) or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as transforming growth factor-ß-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor-suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Receptor Notch1/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Puntos de Control del Ciclo Celular , Transformación Celular Viral , Células Cultivadas , Senescencia Celular , Carcinoma de Células Escamosas de Esófago , Esófago/citología , Esófago/metabolismo , Humanos , Queratinocitos/metabolismo , Fosforilación , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA