Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 82019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31490124

RESUMEN

Voltage-gated potassium channels (Kvs) are gated by transmembrane voltage sensors (VS) that move in response to changes in membrane voltage. Kv10.1 or Eag1 also has three intracellular domains: PAS, C-linker, and CNBHD. We demonstrate that the Eag1 intracellular domains are not required for voltage-dependent gating but likely interact with the VS to modulate gating. We identified specific interactions between the PAS, CNBHD, and VS that modulate voltage-dependent gating and provide evidence that VS movement destabilizes these interactions to promote channel opening. Additionally, mutation of these interactions renders Eag1 insensitive to calmodulin inhibition. The structure of the calmodulin insensitive mutant in a pre-open conformation suggests that channel opening may occur through a rotation of the intracellular domains and calmodulin may prevent this rotation by stabilizing interactions between the VS and intracellular domains. Intracellular domains likely play a similar modulatory role in voltage-dependent gating of the related Kv11-12 channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Animales , Células CHO , Calmodulina/metabolismo , Cricetinae , Cricetulus , Canales de Potasio Éter-A-Go-Go/genética , Modelos Moleculares , Proteínas Mutantes/genética , Técnicas de Placa-Clamp , Conformación Proteica
2.
Science ; 353(6300): 664-9, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27516594

RESUMEN

Voltage-gated potassium (K(v)) channels are gated by the movement of the transmembrane voltage sensor, which is coupled, through the helical S4-S5 linker, to the potassium pore. We determined the single-particle cryo-electron microscopy structure of mammalian K(v)10.1, or Eag1, bound to the channel inhibitor calmodulin, at 3.78 angstrom resolution. Unlike previous K(v) structures, the S4-S5 linker of Eag1 is a five-residue loop and the transmembrane segments are not domain swapped, which suggest an alternative mechanism of voltage-dependent gating. Additionally, the structure and position of the S4-S5 linker allow calmodulin to bind to the intracellular domains and to close the potassium pore, independent of voltage-sensor position. The structure reveals an alternative gating mechanism for K(v) channels and provides a template to further understand the gating properties of Eag1 and related channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Activación del Canal Iónico , Animales , Sitios de Unión , Calmodulina/química , Calmodulina/farmacología , Microscopía por Crioelectrón , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/ultraestructura , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Ratas
3.
Nature ; 510(7506): 512-7, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24965652

RESUMEN

Polyketide natural products constitute a broad class of compounds with diverse structural features and biological activities. Their biosynthetic machinery, represented by type I polyketide synthases (PKSs), has an architecture in which successive modules catalyse two-carbon linear extensions and keto-group processing reactions on intermediates covalently tethered to carrier domains. Here we used electron cryo-microscopy to determine sub-nanometre-resolution three-dimensional reconstructions of a full-length PKS module from the bacterium Streptomyces venezuelae that revealed an unexpectedly different architecture compared to the homologous dimeric mammalian fatty acid synthase. A single reaction chamber provides access to all catalytic sites for the intramodule carrier domain. In contrast, the carrier from the preceding module uses a separate entrance outside the reaction chamber to deliver the upstream polyketide intermediate for subsequent extension and modification. This study reveals for the first time, to our knowledge, the structural basis for both intramodule and intermodule substrate transfer in polyketide synthases, and establishes a new model for molecular dissection of these multifunctional enzyme systems.


Asunto(s)
Sintasas Poliquetidas/química , Sintasas Poliquetidas/ultraestructura , Streptomyces/enzimología , Biocatálisis , Dominio Catalítico , Microscopía por Crioelectrón , Ácido Graso Sintasas/química , Macrólidos/metabolismo , Modelos Moleculares , Sintasas Poliquetidas/metabolismo
4.
Nature ; 510(7506): 560-4, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24965656

RESUMEN

The polyketide synthase (PKS) mega-enzyme assembly line uses a modular architecture to synthesize diverse and bioactive natural products that often constitute the core structures or complete chemical entities for many clinically approved therapeutic agents. The architecture of a full-length PKS module from the pikromycin pathway of Streptomyces venezuelae creates a reaction chamber for the intramodule acyl carrier protein (ACP) domain that carries building blocks and intermediates between acyltransferase, ketosynthase and ketoreductase active sites (see accompanying paper). Here we determine electron cryo-microscopy structures of a full-length pikromycin PKS module in three key biochemical states of its catalytic cycle. Each biochemical state was confirmed by bottom-up liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry. The ACP domain is differentially and precisely positioned after polyketide chain substrate loading on the active site of the ketosynthase, after extension to the ß-keto intermediate, and after ß-hydroxy product generation. The structures reveal the ACP dynamics for sequential interactions with catalytic domains within the reaction chamber, and for transferring the elongated and processed polyketide substrate to the next module in the PKS pathway. During the enzymatic cycle the ketoreductase domain undergoes dramatic conformational rearrangements that enable optimal positioning for reductive processing of the ACP-bound polyketide chain elongation intermediate. These findings have crucial implications for the design of functional PKS modules, and for the engineering of pathways to generate pharmacologically relevant molecules.


Asunto(s)
Biocatálisis , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Streptomyces/enzimología , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Proteína Transportadora de Acilo/ultraestructura , Aciltransferasas/química , Aciltransferasas/metabolismo , Aciltransferasas/ultraestructura , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Dominio Catalítico , Microscopía por Crioelectrón , Macrólidos/metabolismo , Modelos Moleculares , Sintasas Poliquetidas/ultraestructura , Estructura Terciaria de Proteína
5.
Biosci Rep ; 34(2)2014 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27919033

RESUMEN

14-3-3 proteins are highly conserved and have been found in all eukaryotic organisms investigated. They are involved in many varied cellular processes, and interact with hundreds of other proteins. Among many other roles in cells, yeast 14-3-3 proteins have been implicated in rapamycin-mediated cell signalling. We determined the transcription profiles of bmh1 and bmh2 yeast after treatment with rapamycin. We found that, under these conditions, BMH1 and BMH2 are required for rapamycin-induced regulation of distinct, but overlapping sets of genes. Both Bmh1 and Bmh2 associate with the promoters of at least some of these genes. BMH2, but not BMH1, attenuates the repression of genes involved in some functions required for ribosome biogenesis. BMH2 also attenuates the activation of genes sensitive to nitrogen catabolite repression.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Transcripción Genética/efectos de los fármacos , Proteínas 14-3-3/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Chem Biol ; 20(11): 1340-51, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24183970

RESUMEN

Modular type I polyketide synthases (PKSs) are versatile biosynthetic systems that initiate, successively elongate, and modify acyl chains. Intermediate transfer between modules is mediated via docking domains, which are attractive targets for PKS pathway engineering to produce natural product analogs. We identified a class 2 docking domain in cyanobacterial PKSs and determined crystal structures for two docking domain pairs, revealing a distinct class 2 docking strategy for promoting intermediate transfer. The selectivity of class 2 docking interactions, demonstrated in binding and biochemical assays, could be altered by mutagenesis. We determined the ideal fusion location for exchanging class 1 and class 2 docking domains and demonstrated effective polyketide chain transfer in heterologous modules. Thus, class 2 docking domains are tools for rational bioengineering of a broad range of PKSs containing either class 1 or 2 docking domains.


Asunto(s)
Productos Biológicos/metabolismo , Cianobacterias/enzimología , Péptido Sintasas/química , Péptido Sintasas/metabolismo , Ingeniería de Proteínas , Productos Biológicos/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Péptido Sintasas/genética , Estructura Terciaria de Proteína
7.
Chem Biol ; 20(6): 772-83, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23790488

RESUMEN

The formation of an activated cis-3-cyclohexylpropenoic acid by Plm1, the first extension module of the phoslactomycin polyketide synthase, is proposed to occur through an L-3-hydroxyacyl-intermediate as a result of ketoreduction by an A-type ketoreductase (KR). Here, we demonstrate that the KR domain of Plm1 (PlmKR1) catalyzes the formation of an L-3-hydroxyacyl product. The crystal structure of PlmKR1 revealed a well-ordered active site with a nearby Trp residue characteristic of A-type KRs. Structural comparison of PlmKR1 with B-type KRs that produce D-3-hydroxyacyl intermediates revealed significant differences. The active site of cofactor-bound A-type KRs is in a catalysis-ready state, whereas cofactor-bound B-type KRs are in a precatalytic state. Furthermore, the closed lid loop in substrate-bound A-type KRs restricts active site access from all but one direction, which is proposed to control the stereochemistry of ketoreduction.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Alquenos/metabolismo , Proteínas Bacterianas/metabolismo , Oxidorreductasas de Alcohol/química , Alquenos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Estereoisomerismo , Especificidad por Sustrato
8.
J Biol Chem ; 286(25): 22558-69, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21543318

RESUMEN

Prodiginines are a class of red-pigmented natural products with immunosuppressant, anticancer, and antimalarial activities. Recent studies on prodiginine biosynthesis in Streptomyces coelicolor have elucidated the function of many enzymes within the pathway. However, the function of RedJ, which was predicted to be an editing thioesterase based on sequence similarity, is unknown. We report here the genetic, biochemical, and structural characterization of the redJ gene product. Deletion of redJ in S. coelicolor leads to a 75% decrease in prodiginine production, demonstrating its importance for prodiginine biosynthesis. RedJ exhibits thioesterase activity with selectivity for substrates having long acyl chains and lacking a ß-carboxyl substituent. The thioesterase has 1000-fold greater catalytic efficiency with substrates linked to an acyl carrier protein (ACP) than with the corresponding CoA thioester substrates. Also, RedJ strongly discriminates against the streptomycete ACP of fatty acid biosynthesis in preference to RedQ, an ACP of the prodiginine pathway. The 2.12 Å resolution crystal structure of RedJ provides insights into the molecular basis for the observed substrate selectivity. A hydrophobic pocket in the active site chamber is positioned to bind long acyl chains, as suggested by a long-chain ligand from the crystallization solution bound in this pocket. The accessibility of the active site is controlled by the position of a highly flexible entrance flap. These data combined with previous studies of prodiginine biosynthesis in S. coelicolor support a novel role for RedJ in facilitating transfer of a dodecanoyl chain from one acyl carrier protein to another en route to the key biosynthetic intermediate 2-undecylpyrrole.


Asunto(s)
Prodigiosina/análogos & derivados , Streptomyces coelicolor/enzimología , Tioléster Hidrolasas/química , Tioléster Hidrolasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Prodigiosina/biosíntesis , Eliminación de Secuencia , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Especificidad por Sustrato , Tioléster Hidrolasas/genética
9.
Biochemistry ; 48(41): 9801-9, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19694481

RESUMEN

Dihydroorotate dehydrogenases (DHODs) are FMN-containing enzymes that catalyze the conversion of dihydroorotate (DHO) to orotate in the de novo synthesis of pyrimidines. During the reaction, a proton is transferred from C5 of DHO to an active site base and the hydrogen at C6 of DHO is transferred to N5 of the isoalloxazine ring of the flavin as a hydride. In class 2 DHODs, a hydrogen bond network observed in crystal structures has been proposed to deprotonate the C5 atom of DHO. The active site base (Ser175 in the Escherichia coli enzyme) hydrogen bonds to a crystallographic water molecule that sits on a phenylalanine (Phe115 in the E. coli enzyme) and hydrogen bonds to a threonine (Thr178 in the E. coli enzyme), residues that are conserved in class 2 enzymes. The importance of these residues in the oxidation of DHO was investigated using site-directed mutagenesis. Mutating Ser175 to alanine had severe effects on the rate of flavin reduction, slowing it by more than 3 orders of magnitude. Changing the size and/or hydrophobicity of the residues of the hydrogen bond network, Thr178 and Phe115, slowed flavin reduction as much as 2 orders of magnitude, indicating that the active site base and the hydrogen bond network work together for efficient deprotonation of DHO.


Asunto(s)
Escherichia coli/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Dominio Catalítico , Dihidroorotato Deshidrogenasa , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Mononucleótido de Flavina/química , Mononucleótido de Flavina/metabolismo , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA