Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7730, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007544

RESUMEN

Replication fork stalling can provoke fork reversal to form a four-way DNA junction. This remodelling of the replication fork can facilitate repair, aid bypass of DNA lesions, and enable replication restart, but may also pose a risk of over-replication during fork convergence. We show that replication fork stalling at a site-specific barrier in fission yeast can induce gene duplication-deletion rearrangements that are independent of replication restart-associated template switching and Rad51-dependent multi-invasion. Instead, they resemble targeted gene replacements (TGRs), requiring the DNA annealing activity of Rad52, the 3'-flap nuclease Rad16-Swi10, and mismatch repair protein Msh2. We propose that excess DNA, generated during the merging of a canonical fork with a reversed fork, can be liberated by a nuclease and integrated at an ectopic site via a TGR-like mechanism. This highlights how over-replication at replication termination sites can threaten genome stability in eukaryotes.


Asunto(s)
Replicación del ADN , Duplicación de Gen , Replicación del ADN/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN , Recombinasa Rad51/metabolismo
3.
Nat Commun ; 13(1): 7293, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435847

RESUMEN

It is thought that many of the simple and complex genomic rearrangements associated with congenital diseases and cancers stem from mistakes made during the restart of collapsed replication forks by recombination enzymes. It is hypothesised that this recombination-mediated restart process transitions from a relatively accurate initiation phase to a less accurate elongation phase characterised by extensive template switching between homologous, homeologous and microhomologous DNA sequences. Using an experimental system in fission yeast, where fork collapse is triggered by a site-specific replication barrier, we show that ectopic recombination, associated with the initiation of recombination-dependent replication (RDR), is driven mainly by the Rad51 recombinase, whereas template switching, during the elongation phase of RDR, relies more on DNA annealing by Rad52. This finding provides both evidence and a mechanistic basis for the transition hypothesis.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Replicación del ADN , ADN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Unión al ADN/metabolismo
4.
Elife ; 82019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31855181

RESUMEN

Previously we reported that a process called inter-fork strand annealing (IFSA) causes genomic deletions during the termination of DNA replication when an active replication fork converges on a collapsed fork (Morrow et al., 2017). We also identified the FANCM-related DNA helicase Fml1 as a potential suppressor of IFSA. Here, we confirm that Fml1 does indeed suppress IFSA, and show that this function depends on its catalytic activity and ability to interact with Mhf1-Mhf2 via its C-terminal domain. Finally, a plausible mechanism of IFSA suppression is demonstrated by the finding that Fml1 can catalyse regressed fork restoration in vitro.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , ADN Helicasas/genética , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/genética , Replicación del ADN/genética , Genoma Fúngico/genética , Mitosis/genética , Schizosaccharomyces/genética
5.
Sci Rep ; 9(1): 16446, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712578

RESUMEN

Meiotic recombination is essential for producing healthy gametes, and also generates genetic diversity. DNA double-strand break (DSB) formation is the initiating step of meiotic recombination, producing, among other outcomes, crossovers between homologous chromosomes (homologs), which provide physical links to guide accurate chromosome segregation. The parameters influencing DSB position and repair are thus crucial determinants of reproductive success and genetic diversity. Using Schizosaccharomyces pombe, we show that the distance between sequence polymorphisms across homologs has a strong impact on meiotic recombination rate. The closer the sequence polymorphisms are to each other across the homologs the fewer recombination events were observed. In the immediate vicinity of DSBs, sequence polymorphisms affect the frequency of intragenic recombination events (gene conversions). Additionally, and unexpectedly, the crossover rate of flanking markers tens of kilobases away from the sequence polymorphisms was affected by their relative position to each other amongst the progeny having undergone intragenic recombination. A major regulator of this distance-dependent effect is the MutSα-MutLα complex consisting of Msh2, Msh6, Mlh1, and Pms1. Additionally, the DNA helicases Rqh1 and Fml1 shape recombination frequency, although the effects seen here are largely independent of the relative position of the sequence polymorphisms.


Asunto(s)
Meiosis/genética , Recombinación Genética , Proteínas de Unión al ADN/metabolismo , Proteínas MutL/metabolismo , Mutación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
6.
Elife ; 82019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31149897

RESUMEN

Protein-DNA complexes can impede DNA replication and cause replication fork collapse. Whilst it is known that homologous recombination is deployed in such instances to restart replication, it is unclear how a stalled fork transitions into a collapsed fork at which recombination proteins can load. Previously we established assays in Schizosaccharomyces pombe for studying recombination induced by replication fork collapse at the site-specific protein-DNA barrier RTS1 (Nguyen et al., 2015). Here, we provide evidence that efficient recruitment/retention of two key recombination proteins (Rad51 and Rad52) to RTS1 depends on unloading of the polymerase sliding clamp PCNA from DNA by Elg1. We also show that, in the absence of Elg1, reduced recombination is partially suppressed by deleting fbh1 or, to a lesser extent, srs2, which encode known anti-recombinogenic DNA helicases. These findings suggest that PCNA unloading by Elg1 is necessary to limit Fbh1 and Srs2 activity, and thereby enable recombination to proceed.


Asunto(s)
Proteínas Portadoras/metabolismo , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Recombinación Genética/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , ADN de Hongos/metabolismo , Fluorescencia , Modelos Biológicos , Mutación/genética , Fase S
7.
Elife ; 82019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30667359

RESUMEN

Homologous recombination helps ensure the timely completion of genome duplication by restarting collapsed replication forks. However, this beneficial function is not without risk as replication restarted by homologous recombination is prone to template switching (TS) that can generate deleterious genome rearrangements associated with diseases such as cancer. Previously we established an assay for studying TS in Schizosaccharomyces pombe (Nguyen et al., 2015). Here, we show that TS is detected up to 75 kb downstream of a collapsed replication fork and can be triggered by head-on collision between the restarted fork and RNA Polymerase III transcription. The Pif1 DNA helicase, Pfh1, promotes efficient restart and also suppresses TS. A further three conserved helicases (Fbh1, Rqh1 and Srs2) strongly suppress TS, but there is no change in TS frequency in cells lacking Fml1 or Mus81. We discuss how these factors likely influence TS.


Asunto(s)
Replicación del ADN/genética , Recombinación Homóloga/genética , Schizosaccharomyces/genética , Moldes Genéticos , Emparejamiento Base/genética , Mutación/genética , ARN de Transferencia/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
9.
Elife ; 62017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28586299

RESUMEN

Problems that arise during DNA replication can drive genomic alterations that are instrumental in the development of cancers and many human genetic disorders. Replication fork barriers are a commonly encountered problem, which can cause fork collapse and act as hotspots for replication termination. Collapsed forks can be rescued by homologous recombination, which restarts replication. However, replication restart is relatively slow and, therefore, replication termination may frequently occur by an active fork converging on a collapsed fork. We find that this type of non-canonical fork convergence in fission yeast is prone to trigger deletions between repetitive DNA sequences via a mechanism we call Inter-Fork Strand Annealing (IFSA) that depends on the recombination proteins Rad52, Exo1 and Mus81, and is countered by the FANCM-related DNA helicase Fml1. Based on our findings, we propose that IFSA is a potential threat to genomic stability in eukaryotes.


Asunto(s)
Emparejamiento Base , Replicación del ADN , Recombinación Homóloga , Schizosaccharomyces/genética , Eliminación de Secuencia , ADN Helicasas/metabolismo , Inestabilidad Genómica , Recombinasas/metabolismo , Schizosaccharomyces/enzimología
10.
Sci Rep ; 6: 22837, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26957021

RESUMEN

DNA double-strand break (DSB) repair by homologous recombination (HR) involves resection of the break to expose a 3' single-stranded DNA tail. In budding yeast, resection occurs in two steps: initial short-range resection, performed by Mre11-Rad50-Xrs2 and Sae2; and long-range resection catalysed by either Exo1 or Sgs1-Dna2. Here we use genetic assays to investigate the importance of Exo1 and the Sgs1 homologue Rqh1 for DNA repair and promotion of direct repeat recombination in the fission yeast Schizosaccharomyces pombe. We find that Exo1 and Rqh1 function in alternative redundant pathways for promoting survival following replication fork breakage. Exo1 promotes replication fork barrier-induced direct repeat recombination but intriguingly limits recombination induced by fork breakage. Direct repeat recombination induced by ultraviolet light depends on either Exo1 or Rqh1. Finally, we show that Rqh1 plays a major role in limiting Exo1-dependent direct repeat recombination induced by replication fork stalling but only a minor role in constraining recombination induced by fork breakage. The implications of our findings are discussed in the context of the benefits that long-range resection may bring to processing perturbed replication forks.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Exodesoxirribonucleasas/antagonistas & inhibidores , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Reparación del ADN
11.
Elife ; 4: e04539, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25806683

RESUMEN

The completion of genome duplication during the cell cycle is threatened by the presence of replication fork barriers (RFBs). Following collision with a RFB, replication proteins can dissociate from the stalled fork (fork collapse) rendering it incapable of further DNA synthesis unless recombination intervenes to restart replication. We use time-lapse microscopy and genetic assays to show that recombination is initiated within ∼ 10 min of replication fork blockage at a site-specific barrier in fission yeast, leading to a restarted fork within ∼ 60 min, which is only prevented/curtailed by the arrival of the opposing replication fork. The restarted fork is susceptible to further collapse causing hyper-recombination downstream of the barrier. Surprisingly, in our system fork restart is unnecessary for maintaining cell viability. Seemingly, the risk of failing to complete replication prior to mitosis is sufficient to warrant the induction of recombination even though it can cause deleterious genetic change.


Asunto(s)
Replicación del ADN , ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Proteína Fosfatasa 2/genética , Recombinación Genética , Schizosaccharomyces/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , División Celular , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Mitosis , Proteína Fosfatasa 2/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Imagen de Lapso de Tiempo
12.
PLoS Genet ; 11(1): e1004899, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569253

RESUMEN

Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect.


Asunto(s)
Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Endonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Sumoilación/genética , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Humanos , Fosforilación , Saccharomyces cerevisiae , Solubilidad
13.
Nucleic Acids Res ; 42(22): 13723-35, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25414342

RESUMEN

During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.


Asunto(s)
ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Meiosis/genética , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Roturas del ADN de Doble Cadena , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/genética , Reparación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Endonucleasas/fisiología , Eliminación de Gen , Rec A Recombinasas/genética , Rec A Recombinasas/fisiología , Proteínas de Schizosaccharomyces pombe/genética
14.
Biochem Soc Trans ; 41(6): 1726-30, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24256282

RESUMEN

Centromere proteins CENP-S and CENP-X are members of the constitutive centromere-associated network, which is a conserved group of proteins that are needed for the assembly and function of kinetochores at centromeres. Intriguingly CENP-S and CENP-X have alter egos going by the names of MHF1 (FANCM-associated histone-fold protein 1) and MHF2 respectively. In this guise they function with a DNA translocase called FANCM (Fanconi's anemia complementation group M) to promote DNA repair and homologous recombination. In the present review we discuss current knowledge of the biological roles of CENP-S and CENP-X and how their dual existence may be a common feature of CCAN (constitutive centromere-associated network) proteins.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Recombinación Genética , Proteínas Supresoras de Tumor/metabolismo , ADN/genética , ADN/metabolismo , Humanos
15.
Open Biol ; 3(9): 130102, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24026537

RESUMEN

The histone-fold proteins Mhf1/CENP-S and Mhf2/CENP-X perform two important functions in vertebrate cells. First, they are components of the constitutive centromere-associated network, aiding kinetochore assembly and function. Second, they work with the FANCM DNA translocase to promote DNA repair. However, it has been unclear whether there is crosstalk between these roles. We show that Mhf1 and Mhf2 in fission yeast, as in vertebrates, serve a dual function, aiding DNA repair/recombination and localizing to centromeres to promote chromosome segregation. Importantly, these functions are distinct, with the former being dependent on their interaction with the FANCM orthologue Fml1 and the latter not. Together with Fml1, they play a second role in aiding chromosome segregation by processing sister chromatid junctions. However, a failure of this activity does not manifest dramatically increased levels of chromosome missegregation due to the Mus81-Eme1 endonuclease, which acts as a failsafe to resolve DNA junctions before the end of mitosis.


Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas Cromosómicas no Histona/análisis , Segregación Cromosómica , ADN Helicasas/análisis , Reparación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Mitosis , Mapas de Interacción de Proteínas , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/análisis
16.
PLoS One ; 8(8): e71960, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936535

RESUMEN

The SUMO-dependent ubiquitin ligase Slx8 plays key roles in promoting genome stability, including the processing of trapped Topoisomerase I (Top1) cleavage complexes and removal of toxic SUMO conjugates. We show that it is the latter function that constitutes Slx8's primary role in fission yeast. The SUMO conjugates in question are formed by the SUMO ligase Pli1, which is necessary for limiting spontaneous homologous recombination when Top1 is present. Surprisingly there is no requirement for Pli1 to limit recombination in the vicinity of a replication fork blocked at the programmed barrier RTS1. Notably, once committed to Pli1-mediated SUMOylation Slx8 becomes essential for genotoxin resistance, limiting both spontaneous and RTS1 induced recombination, and promoting normal chromosome segregation. We show that Slx8 removes Pli1-dependent Top1-SUMO conjugates and in doing so helps to constrain recombination at RTS1. Overall our data highlight how SUMOylation and SUMO-dependent ubiquitylation by the Pli1-Slx8 axis contribute in different ways to maintain genome stability.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Inestabilidad Genómica , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Segregación Cromosómica/efectos de los fármacos , Segregación Cromosómica/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , ADN-Topoisomerasas de Tipo I/deficiencia , ADN-Topoisomerasas de Tipo I/genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , Eliminación de Gen , Inestabilidad Genómica/efectos de los fármacos , Ligasas , Mutágenos/toxicidad , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Sumoilación/efectos de los fármacos
17.
Cancer Res ; 73(14): 4362-71, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23576554

RESUMEN

DNA double-strand breaks (DSB) occur frequently during replication in sister chromatids and are dramatically increased when cells are exposed to chemotherapeutic agents including camptothecin. Such DSBs are efficiently repaired specifically by homologous recombination (HR) with the intact sister chromatid. HR, therefore, plays pivotal roles in cellular proliferation and cellular tolerance to camptothecin. Mammalian cells carry several structure-specific endonucleases, such as Xpf-Ercc1 and Mus81-Eme1, in which Xpf and Mus81 are the essential subunits for enzymatic activity. Here, we show the functional overlap between Xpf and Mus81 by conditionally inactivating Xpf in the chicken DT40 cell line, which has no Mus81 ortholog. Although mammalian cells deficient in either Xpf or Mus81 are viable, Xpf inactivation in DT40 cells was lethal, resulting in a marked increase in the number of spontaneous chromosome breaks. Similarly, inactivation of both Xpf and Mus81 in human HeLa cells and murine embryonic stem cells caused numerous spontaneous chromosome breaks. Furthermore, the phenotype of Xpf-deficient DT40 cells was reversed by ectopic expression of human Mus81-Eme1 or human Xpf-Ercc1 heterodimers. These observations indicate the functional overlap of Xpf-Ercc1 and Mus81-Eme1 in the maintenance of genomic DNA. Both Mus81-Eme1 and Xpf-Ercc1 contribute to the completion of HR, as evidenced by the data that the expression of Mus81-Eme1 or Xpf-Ercc1 diminished the number of camptothecin-induced chromosome breaks in Xpf-deficient DT40 cells, and to preventing early steps in HR by deleting XRCC3 suppressed the nonviability of Xpf-deficient DT40 cells. In summary, Xpf and Mus81 have a substantially overlapping function in completion of HR.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Recombinación Homóloga , Animales , Muerte Celular/genética , Línea Celular Tumoral , Pollos , Aberraciones Cromosómicas , Roturas del ADN de Doble Cadena , Células HeLa , Humanos , Ratones
19.
Nucleic Acids Res ; 40(19): 9584-95, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22844101

RESUMEN

In fission yeast, the DNA helicase Fml1, which is an orthologue of human FANCM, is a key component of the machinery that drives and governs homologous recombination (HR). During the repair of DNA double-strand breaks by HR, it limits the occurrence of potentially deleterious crossover recombinants, whereas at stalled replication forks, it promotes HR to aid their recovery. Here, we have mutated conserved residues in Fml1's Walker A (K99R) and Walker B (D196N) motifs to determine whether its activities are dependent on its ability to hydrolyse ATP. Both Fml1(K99R) and Fml1(D196N) are proficient for DNA binding but totally deficient in DNA unwinding and ATP hydrolysis. In vivo both mutants exhibit a similar reduction in recombination at blocked replication forks as a fml1Δ mutant indicating that Fml1's motor activity, fuelled by ATP hydrolysis, is essential for its pro-recombinogenic role. Intriguingly, both fml1(K99R) and fml1(D196N) mutants exhibit greater sensitivity to genotoxins and higher levels of crossing over during DSB repair than a fml1Δ strain. These data suggest that without its motor activity, the binding of Fml1 to its DNA substrate can impede alternative mechanisms of repair and crossover avoidance.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN por Recombinación , Proteínas de Schizosaccharomyces pombe/metabolismo , Adenosina Trifosfatasas/genética , Núcleo Celular/enzimología , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Replicación del ADN , ADN Cruciforme/metabolismo , Conversión Génica , Metilmetanosulfonato/toxicidad , Mitosis/genética , Mutágenos/toxicidad , Mutación , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
20.
Science ; 336(6088): 1585-8, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22723423

RESUMEN

The formation of healthy gametes depends on programmed DNA double-strand breaks (DSBs), which are each repaired as a crossover (CO) or non-crossover (NCO) from a homologous template. Although most of these DSBs are repaired without giving COs, little is known about the genetic requirements of NCO-specific recombination. We show that Fml1, the Fanconi anemia complementation group M (FANCM)-ortholog of Schizosaccharomyces pombe, directs the formation of NCOs during meiosis in competition with the Mus81-dependent pro-CO pathway. We also define the Rad51/Dmc1-mediator Swi5-Sfr1 as a major determinant in biasing the recombination process in favor of Mus81, to ensure the appropriate amount of COs to guide meiotic chromosome segregation. The conservation of these proteins from yeast to humans suggests that this interplay may be a general feature of meiotic recombination.


Asunto(s)
Intercambio Genético , ADN Helicasas/metabolismo , Recombinación Homóloga , Meiosis , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Segregación Cromosómica , Cromosomas Fúngicos/fisiología , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Reparación del ADN , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Mutación , Recombinasas/genética , Recombinasas/metabolismo , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...