Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 10(3): 386-392, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30614706

RESUMEN

In semiconductor nanowires, understanding both the sources of luminescence (excitonic recombination, defects, etc.) and the distribution of luminescent centers (be they uniformly distributed, or concentrated at structural defects or at the surface) is important for synthesis and applications. We develop scanning transmission electron microscopy-cathodoluminescence (STEM-CL) measurements, allowing the structure and cathodoluminescence (CL) of single ZnO nanowires to be mapped at high resolution. Using a CL pixel resolution of 10 nm, variations of the CL spectra within such nanowires in the direction perpendicular to the nanowire growth axis are identified for the first time. By comparing the local CL spectra with the bulk photoluminescence spectra, the CL spectral features are assigned to internal and surface defect structures. Hyperspectral CL maps are deconvolved to enable characteristic spectral features to be spatially correlated with structural features within single nanowires. We have used these maps to show that the spatial distribution of these defects correlates well with regions that show an increased rate of nonradiative transitions.

2.
Angew Chem Int Ed Engl ; 57(39): 12656-12660, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30095209

RESUMEN

Two-dimensional (2D) layered graphitic carbon nitride (gCN) nanosheets offer intriguing electronic and chemical properties. However, the exfoliation and functionalisation of gCN for specific applications remain challenging. We report a scalable one-pot reductive method to produce solutions of single- and few-layer 2D gCN nanosheets with excellent stability in a high mass yield (35 %) from polytriazine imide. High-resolution imaging confirmed the intact crystalline structure and identified an AB stacking for gCN layers. The charge allows deliberate organic functionalisation of dissolved gCN, providing a general route to adjust their properties.

3.
Nat Commun ; 9(1): 759, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29459632

RESUMEN

The Peer Review File associated with this Article was updated shortly after publication to redact confidential comments to the editor.

4.
Nat Commun ; 8(1): 1969, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29213113

RESUMEN

The electrochemical intercalation of layered materials, particularly graphite, is fundamental to the operation of rechargeable energy-storage devices such as the lithium-ion battery and the carbon-enhanced lead-acid battery. Intercalation is thought to proceed in discrete stages, where each stage represents a specific structure and stoichiometry of the intercalant relative to the host. However, the three-dimensional structures of the stages between unintercalated and fully intercalated are not known, and the dynamics of the transitions between stages are not understood. Using optical and scanning transmission electron microscopy, we video the intercalation of single microcrystals of graphite in concentrated sulfuric acid. Here we find that intercalation charge transfer proceeds through highly variable current pulses that, although directly associated with structural changes, do not match the expectations of the classical theories. Evidently random nanoscopic defects dominate the dynamics of intercalation.


Asunto(s)
Suministros de Energía Eléctrica , Grafito/química , Sustancias Intercalantes/química , Electrodos , Iones/química , Litio/química , Microscopía Electrónica de Transmisión de Rastreo , Nanoestructuras/química , Ácidos Sulfúricos , Propiedades de Superficie
5.
Angew Chem Int Ed Engl ; 56(28): 8144-8148, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28520181

RESUMEN

Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single-wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT "nanoreactors". The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single-stranded zig-zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one-dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus.

6.
ACS Nano ; 11(3): 2714-2723, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28286946

RESUMEN

Exceptionally small and well-defined copper (Cu) and cuprite (Cu2O) nanoparticles (NPs) are synthesized by the reaction of mesitylcopper(I) with either H2 or air, respectively. In the presence of substoichiometric quantities of ligands, namely, stearic or di(octyl)phosphinic acid (0.1-0.2 equiv vs Cu), ultrasmall nanoparticles are prepared with diameters as low as ∼2 nm, soluble in a range of solvents. The solutions of Cu NPs undergo quantitative oxidation, on exposure to air, to form Cu2O NPs. The Cu2O NPs can be reduced back to Cu(0) NPs using accessible temperatures and low pressures of hydrogen (135 °C, 3 bar H2). This striking reversible redox cycling of the discrete, solubilized Cu/Cu(I) colloids was successfully repeated over 10 cycles, representing 19 separate reactions. The ligands influence the evolution of both composition and size of the nanoparticles, during synthesis and redox cycling, as explored in detail using vacuum-transfer aberration-corrected transmission electron microscopy, X-ray photoelectron spectroscopy, and visible spectroscopy.

7.
Nat Commun ; 7: 13008, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27734828

RESUMEN

The bottom-up synthesis of ligand-stabilized functional nanoparticles from molecular precursors is widely applied but is difficult to study mechanistically. Here we use 31P NMR spectroscopy to follow the trajectory of phosphinate ligands during the synthesis of a range of ligated zinc oxo clusters, containing 4, 6 and 11 zinc atoms. Using an organometallic route, the clusters interconvert rapidly and self-assemble in solution based on thermodynamic equilibria rather than nucleation kinetics. These clusters are also identified in situ during the synthesis of phosphinate-capped zinc oxide nanoparticles. Unexpectedly, the ligand is sequestered to a stable Zn11 cluster during the majority of the synthesis and only becomes coordinated to the nanoparticle surface, in the final step. In addition to a versatile and accessible route to (optionally doped) zinc clusters, the findings provide an understanding of the role of well-defined molecular precursors during the synthesis of small (2-4 nm) nanoparticles.

8.
Chem Sci ; 7(4): 2916-2923, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30090285

RESUMEN

A range of carbon nanomaterials, with varying dimensionality, were dispersed by a non-damaging and versatile chemical reduction route, and subsequently grafted by reaction with methoxy polyethylene glycol (mPEG) monobromides. The use of carbon nanomaterials with different geometries provides both a systematic comparison of surface modification chemistry and the opportunity to study factors affecting specific applications. Multi-walled carbon nanotubes, single-walled carbon nanotubes, graphite nanoplatelets, exfoliated few layer graphite and carbon black were functionalized with mPEG-Br, yielding grafting ratios relative to the nanocarbon framework between ca. 7 and 135 wt%; the products were characterised by Raman spectroscopy, TGA-MS, and electron microscopy. The functionalized materials were tested as nucleants by subjecting them to rigorous protein crystallization studies. Sparsely functionalized flat sheet geometries proved exceptionally effective at inducing crystallization of six proteins. This new class of nucleant, based on PEG grafted graphene-related materials, can be widely applied to promote the growth of 3D crystals suitable for X-ray crystallography. The association of the protein ferritin with functionalized exfoliated few layer graphite was directly visualized by transmission electron microscopy, illustrating the formation of ordered clusters of protein molecules critical to successful nucleation.

9.
Nature ; 503(7476): E1-2, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24256806
10.
Nature ; 496(7443): 74-7, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23535594

RESUMEN

Dislocations and their interactions strongly influence many material properties, ranging from the strength of metals and alloys to the efficiency of light-emitting diodes and laser diodes. Several experimental methods can be used to visualize dislocations. Transmission electron microscopy (TEM) has long been used to image dislocations in materials, and high-resolution electron microscopy can reveal dislocation core structures in high detail, particularly in annular dark-field mode. A TEM image, however, represents a two-dimensional projection of a three-dimensional (3D) object (although stereo TEM provides limited information about 3D dislocations). X-ray topography can image dislocations in three dimensions, but with reduced resolution. Using weak-beam dark-field TEM and scanning TEM, electron tomography has been used to image 3D dislocations at a resolution of about five nanometres (refs 15, 16). Atom probe tomography can offer higher-resolution 3D characterization of dislocations, but requires needle-shaped samples and can detect only about 60 per cent of the atoms in a sample. Here we report 3D imaging of dislocations in materials at atomic resolution by electron tomography. By applying 3D Fourier filtering together with equal-slope tomographic reconstruction, we observe nearly all the atoms in a multiply twinned platinum nanoparticle. We observed atomic steps at 3D twin boundaries and imaged the 3D core structure of edge and screw dislocations at atomic resolution. These dislocations and the atomic steps at the twin boundaries, which appear to be stress-relief mechanisms, are not visible in conventional two-dimensional projections. The ability to image 3D disordered structures such as dislocations at atomic resolution is expected to find applications in materials science, nanoscience, solid-state physics and chemistry.

11.
ACS Nano ; 6(7): 6308-17, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22702348

RESUMEN

An ideal technique for observing nanoscale assembly would provide atomic-resolution images of both the products and the reactants in real time. Using a transmission electron microscope we image in situ the electrochemical deposition of lead from an aqueous solution of lead(II) nitrate. Both the lead deposits and the local Pb(2+) concentration can be visualized. Depending on the rate of potential change and the potential history, lead deposits on the cathode in a structurally compact layer or in dendrites. In both cases the deposits can be removed and the process repeated. Asperities that persist through many plating and stripping cycles consistently nucleate larger dendrites. Quantitative digital image analysis reveals excellent correlation between changes in the Pb(2+) concentration, the rate of lead deposition, and the current passed by the electrochemical cell. Real-time electron microscopy of dendritic growth dynamics and the associated local ionic concentrations can provide new insight into the functional electrochemistry of batteries and related energy storage technologies.


Asunto(s)
Suministros de Energía Eléctrica , Plomo , Nanopartículas del Metal , Cationes Bivalentes , Técnicas Electroquímicas , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión de Rastreo , Microscopía Electrónica de Transmisión , Nanotecnología , Soluciones , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...