Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Data Brief ; 50: 109465, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37600596

RESUMEN

The data described support the research article entitled "Interseeded cover crop mixtures influence soil water storage during the corn phase of corn-soybean-wheat no-till cropping systems". Data were collected during the corn (Zea mays L.) phase from rotations with four different cover crop (CC) treatments. The study was conducted at the USDA research facility in Beltsville, MD from 2017 through 2020. The data are available from a repository at Ag Data Commons. Descriptions of crop rotations, soil water and temperature sensors, placement, and frequency of measurements are provided in the manuscript and repository. Hourly volumetric soil water content (m3 m-3) (VWC) and soil temperature (°C) data for each soil depth (0-12, 25-35, 50-60, 75-85 cm) are available from the repository. In the manuscript, daily values of soil water storage were used to estimate daily evapotranspiration (ET) and infiltration. A text file of meta information is provided in the repository describing data collection procedures, estimation of ET and infiltration, and methods used to replace sensor data having errors. Daily precipitation, maximum and minimum temperatures, net solar radiation, and windspeed collected at a nearby weather station are provided for estimating growing degree days and potential ET. Cover crop biomass (kg ha-1) prior to corn planting and corn yields are provided by replication and cover crop system treatment for the four years.

2.
PLoS One ; 17(4): e0267757, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482753

RESUMEN

Efficient use of nitrogen (N) is essential to protect water quality in high-input organic vegetable production systems, but little is known about the long-term effects of organic management on N mass balances. We measured soil N and tabulated N inputs (organic fertilizers, compost, irrigation water, atmospheric deposition, cover crop seed, vegetable transplant plugs and fixation by legume cover crops) and exports in harvested crops (lettuce, broccoli) over eight years to calculate soil surface and soil system N mass balances for the Salinas Organic Cropping Systems study in Salinas, CA. Our objectives were to 1) quantify the long-term effects of compost, cover crop frequency and cover crop type on soil N, cover crop and vegetable crop N uptake, and yield, and 2) tabulate N balances to assess the effects of these factors on N export in harvested crops, soil N storage and potential N loss. Results show that across all systems only 13 to 23% of N inputs were exported in harvest. Annual compost applications increased soil N stocks but had little effect on vegetable N uptake or yield, increasing the cumulative soil system N balance surplus over eight years by 999 kg ha-1, relative to the system receiving organic fertilizers alone. Annually planted winter cover crops increased N availability, crop uptake and export; however, biological N fixation by legumes negated the positive effect of increased harvest exports on the balance surplus in the legume-rye cover cropped system. Over eight years, rye cover crops improved system performance and reduced the cumulative N surplus by 384 kg ha-1 relative to the legume-rye mixture by increasing N retention and availability without increasing N inputs. Reduced reliance on external compost inputs and increased use of annually planted non-legume cover crops can improve efficient N use and cropping system yield, consequently improving environmental performance.


Asunto(s)
Fabaceae , Nitrógeno , Agricultura/métodos , Productos Agrícolas , Fertilizantes/análisis , Suelo , Verduras
3.
Data Brief ; 33: 106481, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294503

RESUMEN

Data presented are on carbon (C) and nitrogen (N) inputs, and changes in soil C and N in eight systems during the first eight years of a tillage-intensive organic vegetable systems study that was focused on romaine lettuce and broccoli production in Salinas Valley on the central coast region of California. The eight systems differed in organic matter inputs from cover crops and urban yard-waste compost. The cover crops included cereal rye, a legume-rye mixture, and a mustard mixture planted at two seeding rates (standard rate 1x versus high rate 3x). There were three legume-rye 3x systems that differed in compost inputs (0 versus 7.6 Mg ha-1 vegetable crop-1) and cover cropping frequency (every winter versus every fourth winter). The data include: (1) changes in soil total organic C and total N concentrations and stocks and nitrate N (NO3-N) concentrations over 8 years, (2) cumulative above ground and estimated below ground C and N inputs, cover crop and crop N uptake, and harvested crop N export over 8 years, (3) soil permanganate oxidizable carbon (POX-C) concentrations and stocks at time 0, 6 and 8 years, and (4) cumulative, estimated yields of lettuce and broccoli (using total biomass and harvest index values) over the 8 years. The C inputs from the vegetables and cover crops included estimates of below ground inputs based on shoot biomass and literature values for shoot:root. The data in this article support and augment information presented in the research article "Winter cover crops increase readily decomposable soil carbon, but compost drives total soil carbon during eight years of intensive, organic vegetable production in California".

4.
PLoS One ; 15(2): e0228677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32027701

RESUMEN

Maintaining soil organic carbon (SOC) in frequently tilled, intensive organic vegetable production systems is a challenge that is not well understood. Compost and cover crops are often used to add organic matter to the soil in these systems. Compost contributes relatively stabilized carbon (C) while cover crops provide readily degradable (labile) organic matter. Our objectives were to quantify C inputs, and to assess the effects of urban yard-waste compost, winter cover crop frequency and cover crop type on SOC and labile C stocks during eight years of intensive, organic production that usually included two vegetable crops per year in a long-term systems study in Salinas, California. Total C inputs from pelleted fertilizer, compost, vegetable transplant potting mix, vegetable residue and cover crops, including estimates of below ground inputs, ranged from 40 to 108 Mg ha-1 in the five systems evaluated. Following a rapid decline in SOC stocks in year 1, compost had the largest effect on SOC stocks increasing mean SOC over years 2 to 8 by an average of 9.4 Mg ha-1, while increased cover crop frequency (annual vs. quadrennial) led to an additional 3.4 Mg ha-1 increase. In contrast, cover cropping frequency had the largest effect on permanganate oxidizable labile C (POX-C), increasing POX-C by 26% after 8 years. Labile POX-C was well correlated with microbial biomass C and nitrogen. Compost had the greatest effect on total SOC stocks, while increasing cover crop frequency altered the composition of SOC by increasing the proportion of labile C. These results suggest that frequent winter cover cropping has a greater potential than compost to increase nutrient availability and vegetable yields in high-input, tillage intensive vegetable systems.


Asunto(s)
Carbono/análisis , Productos Agrícolas/crecimiento & desarrollo , Suelo/química , California , Compostaje , Estaciones del Año , Verduras
6.
Methods Mol Biol ; 2067: 89-102, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31701447

RESUMEN

In this chapter we describe conventional methods used for preparing renal tissue for transmission electron microscopy. We also describe a relatively new technique, serial block face scanning electron microscopy. Protocols are given for processing, sectioning, and imaging of tissue along with methods for obtaining quantitative data from the results.


Asunto(s)
Técnicas de Preparación Histocitológica/métodos , Glomérulos Renales/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Animales , Biopsia , Humanos , Imagenología Tridimensional , Glomérulos Renales/patología
7.
J Dev Behav Pediatr ; 40(9): 659-668, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31658112

RESUMEN

Increased visibility of adverse encounters between individuals with autism spectrum disorder (ASD) and law enforcement (LE) has stimulated a dialog among providers. There are a variety of contributing factors to the increase, including the recognized lack of training of LE professionals on the needs of individuals with ASD and the paucity of awareness of resources by the families of these individuals. The aim of this article is to provide insight into developmental-behavioral pediatric professionals, to enhance safety and reduce adverse outcomes for individuals with ASD in schools and the community.


Asunto(s)
Trastorno del Espectro Autista , Colaboración Intersectorial , Aplicación de la Ley , Seguridad del Paciente , Policia , Adolescente , Humanos , Masculino , Policia/educación , Policia/normas
8.
Diabetologia ; 62(11): 2129-2142, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31399844

RESUMEN

AIMS/HYPOTHESIS: Long non-coding RNAs (lncRNAs) are garnering increasing attention for their putative roles in the pathogenesis of chronic diseases, including diabetic kidney disease (DKD). However, much about in vivo lncRNA functionality in the adult organism remains unclear. To better understand lncRNA regulation and function in DKD, we explored the effects of the modular scaffold lncRNA HOTAIR (HOX antisense intergenic RNA), which approximates chromatin modifying complexes to their target sites on the genome. METHODS: Experiments were performed in human kidney tissue, in mice with streptozotocin-induced diabetes, the db/db mouse model of type 2 diabetes, podocyte-specific Hotair knockout mice and conditionally immortalised mouse podocytes. RESULTS: HOTAIR was observed to be expressed by several kidney cell-types, including glomerular podocytes, in both human and mouse kidneys. However, knockout of Hotair from podocytes had almost no effect on kidney structure, function or ultrastructure. Glomerular HOTAIR expression was found to be increased in human DKD, in the kidneys of mice with streptozotocin-induced diabetes and in the kidneys of db/db mice. Likewise, exposure of cultured mouse podocytes to high glucose caused upregulation of Hotair expression, which occurred in a p65-dependent manner. Although HOTAIR expression was upregulated in DKD and in high glucose-exposed podocytes, its knockout did not alter the development of kidney damage in diabetic mice. Rather, in a bioinformatic analysis of human kidney tissue, HOTAIR expression closely paralleled the expression of its genic neighbour, HOXC11, which is important to developmental patterning but which has an uncertain role in the adult kidney. CONCLUSIONS/INTERPRETATION: Many lncRNAs have been found to bind to the same chromatin modifying complexes. Thus, there is likely to exist sufficient redundancy in the system that the biological effects of dysregulated lncRNAs in kidney disease may often be inconsequential. The example of the archetypal scaffold lncRNA, HOTAIR, illustrates how lncRNA dysregulation may be a bystander in DKD without necessarily contributing to the pathogenesis of the condition. In the absence of in vivo validation, caution should be taken before ascribing major functional roles to single lncRNAs in the pathogenesis of chronic diseases.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Regulación de la Expresión Génica , ARN Largo no Codificante/metabolismo , Animales , Tipificación del Cuerpo , Cromatina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Hibridación in Situ , Glomérulos Renales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/citología , Podocitos/metabolismo , ARN Largo no Codificante/genética
9.
Diabetes ; 68(9): 1841-1852, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31217174

RESUMEN

Damage to the vasculature is the primary mechanism driving chronic diabetic microvascular complications such as diabetic nephropathy, which manifests as albuminuria. Therefore, treatments that protect the diabetic vasculature have significant therapeutic potential. Soluble neurite outgrowth inhibitor-B (sNogo-B) is a circulating N-terminus isoform of full-length Nogo-B, which plays a key role in vascular remodeling following injury. However, there is currently no information on the role of sNogo-B in the context of diabetic nephropathy. We demonstrate that overexpression of sNogo-B in the circulation ameliorates diabetic kidney disease by reducing albuminuria, hyperfiltration, and abnormal angiogenesis and protecting glomerular capillary structure. Systemic sNogo-B overexpression in diabetic mice also associates with dampening vascular endothelial growth factor-A signaling and reducing endothelial nitric oxide synthase, AKT, and GSK3ß phosphorylation. Furthermore, sNogo-B prevented the impairment of tube formation, which occurred when human endothelial cells were exposed to sera from patients with diabetic kidney disease. Collectively, these studies provide the first evidence that sNogo-B protects the vasculature in diabetes and may represent a novel therapeutic target for diabetic vascular complications.


Asunto(s)
Capilares/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glomérulos Renales/irrigación sanguínea , Proteínas Nogo/metabolismo , Angiopoyetina 1/metabolismo , Angiopoyetina 2/metabolismo , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/genética , Humanos , Glomérulos Renales/metabolismo , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Nogo/sangre , Proteínas Nogo/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
J Pathol ; 246(4): 485-496, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30125361

RESUMEN

Planar cell polarity (PCP) pathways control the orientation and alignment of epithelial cells within tissues. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the normal differentiation of kidney glomeruli and tubules. Vangl2 has also been implicated in modifying the course of acquired glomerular disease, and here, we further explored how Vangl2 impacts on glomerular pathobiology in this context. Targeted genetic deletion of Vangl2 in mouse glomerular epithelial podocytes enhanced the severity of not only irreversible accelerated nephrotoxic nephritis but also lipopolysaccharide-induced reversible glomerular damage. In each proteinuric model, genetic deletion of Vangl2 in podocytes was associated with an increased ratio of active-MMP9 to inactive MMP9, an enzyme involved in tissue remodelling. In addition, by interrogating microarray data from two cohorts of renal patients, we report increased VANGL2 transcript levels in the glomeruli of individuals with focal segmental glomerulosclerosis, suggesting that the molecule may also be involved in certain human glomerular diseases. These observations support the conclusion that Vangl2 modulates glomerular injury, at least in part by acting as a brake on MMP9, a potentially harmful endogenous enzyme. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Polaridad Celular , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glomérulos Renales/metabolismo , Proteínas de la Membrana/metabolismo , Nefrosis Lipoidea/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Podocitos/metabolismo , Adulto , Animales , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/patología , Glomeruloesclerosis Focal y Segmentaria/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Nefrosis Lipoidea/genética , Nefrosis Lipoidea/patología , Nefrosis Lipoidea/fisiopatología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Podocitos/patología , Transducción de Señal , Adulto Joven
11.
J Clin Invest ; 128(1): 483-499, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29227285

RESUMEN

Histone protein modifications control fate determination during normal development and dedifferentiation during disease. Here, we set out to determine the extent to which dynamic changes to histones affect the differentiated phenotype of ordinarily quiescent adult glomerular podocytes. To do this, we examined the consequences of shifting the balance of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark in podocytes. Adriamycin nephrotoxicity and subtotal nephrectomy (SNx) studies indicated that deletion of the histone methylating enzyme EZH2 from podocytes decreased H3K27me3 levels and sensitized mice to glomerular disease. H3K27me3 was enriched at the promoter region of the Notch ligand Jag1 in podocytes, and derepression of Jag1 by EZH2 inhibition or knockdown facilitated podocyte dedifferentiation. Conversely, inhibition of the Jumonji C domain-containing demethylases Jmjd3 and UTX increased the H3K27me3 content of podocytes and attenuated glomerular disease in adriamycin nephrotoxicity, SNx, and diabetes. Podocytes in glomeruli from humans with focal segmental glomerulosclerosis or diabetic nephropathy exhibited diminished H3K27me3 and heightened UTX content. Analogous to human disease, inhibition of Jmjd3 and UTX abated nephropathy progression in mice with established glomerular injury and reduced H3K27me3 levels. Together, these findings indicate that ostensibly stable chromatin modifications can be dynamically regulated in quiescent cells and that epigenetic reprogramming can improve outcomes in glomerular disease by repressing the reactivation of developmental pathways.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Histonas/metabolismo , Podocitos/metabolismo , Animales , Nefropatías Diabéticas/patología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Histona Demetilasas/metabolismo , Humanos , Proteína Jagged-1/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Masculino , Metilación , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas Nucleares/metabolismo , Podocitos/patología
12.
J Am Soc Nephrol ; 28(9): 2641-2653, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28424277

RESUMEN

The nonreceptor kinase Janus kinase 2 (JAK2) has garnered attention as a promising therapeutic target for the treatment of CKD. However, being ubiquitously expressed in the adult, JAK2 is also likely to be necessary for normal organ function. Here, we investigated the phenotypic effects of JAK2 deficiency. Mice in which JAK2 had been deleted from podocytes exhibited an elevation in urine albumin excretion that was accompanied by increased podocyte autophagosome fractional volume and p62 aggregation, which are indicative of impaired autophagy completion. In cultured podocytes, knockdown of JAK2 similarly impaired autophagy and led to downregulation in the expression of lysosomal genes and decreased activity of the lysosomal enzyme, cathepsin D. Because transcription factor EB (TFEB) has recently emerged as a master regulator of autophagosome-lysosome function, controlling the expression of several of the genes downregulated by JAK2 knockdown, we questioned whether TFEB is regulated by JAK2. In immortalized mouse podocytes, JAK2 knockdown decreased TFEB promoter activity, expression, and nuclear localization. In silico analysis and chromatin immunoprecipitation assays revealed that the downstream mediator of JAK2 signaling STAT1 binds to the TFEB promoter. Finally, overexpression of TFEB in JAK2-deficient podocytes reversed lysosomal dysfunction and restored albumin permselectivity. Collectively, these observations highlight the homeostatic actions of JAK2 in podocytes and the importance of TFEB to autophagosome-lysosome function in these cells. These results also raise the possibility that therapeutically modulating TFEB activity may improve podocyte health in glomerular disease.


Asunto(s)
Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Janus Quinasa 2/genética , Podocitos/metabolismo , Albuminuria/genética , Animales , Autofagosomas/ultraestructura , Catepsina D/metabolismo , Células Cultivadas , Simulación por Computador , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Janus Quinasa 2/deficiencia , Janus Quinasa 2/metabolismo , Glomérulos Renales/citología , Lisosomas/ultraestructura , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/metabolismo , Fenotipo , Podocitos/ultraestructura , ARN Mensajero/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
13.
Kidney Int ; 90(5): 1056-1070, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27575556

RESUMEN

Glomerular disease is characterized by morphologic changes in podocyte cells accompanied by inflammation and fibrosis. Thymosin ß4 regulates cell morphology, inflammation, and fibrosis in several organs and administration of exogenous thymosin ß4 improves animal models of unilateral ureteral obstruction and diabetic nephropathy. However, the role of endogenous thymosin ß4 in the kidney is unknown. We demonstrate that thymosin ß4 is expressed prominently in podocytes of developing and adult mouse glomeruli. Global loss of thymosin ß4 did not affect healthy glomeruli, but accelerated the severity of immune-mediated nephrotoxic nephritis with worse renal function, periglomerular inflammation, and fibrosis. Lack of thymosin ß4 in nephrotoxic nephritis led to the redistribution of podocytes from the glomerular tuft toward the Bowman capsule suggesting a role for thymosin ß4 in the migration of these cells. Thymosin ß4 knockdown in cultured podocytes also increased migration in a wound-healing assay, accompanied by F-actin rearrangement and increased RhoA activity. We propose that endogenous thymosin ß4 is a modifier of glomerular injury, likely having a protective role acting as a brake to slow disease progression.


Asunto(s)
Glomerulonefritis/metabolismo , Podocitos/metabolismo , Timosina/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Citoesqueleto/metabolismo , Fibrosis , Glomerulonefritis/patología , Glomérulos Renales/patología , Macrófagos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
14.
Diabetes ; 65(5): 1398-409, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26868296

RESUMEN

Discovery of common pathways that mediate both pancreatic ß-cell function and end-organ function offers the opportunity to develop therapies that modulate glucose homeostasis and separately slow the development of diabetes complications. Here, we investigated the in vitro and in vivo effects of pharmacological agonism of the prostaglandin I2 (IP) receptor in pancreatic ß-cells and in glomerular podocytes. The IP receptor agonist MRE-269 increased intracellular 3',5'-cyclic adenosine monophosphate (cAMP), augmented glucose-stimulated insulin secretion (GSIS), and increased viability in MIN6 ß-cells. Its prodrug form, selexipag, augmented GSIS and preserved islet ß-cell mass in diabetic mice. Determining that this preservation of ß-cell function is mediated through cAMP/protein kinase A (PKA)/nephrin-dependent pathways, we found that PKA inhibition, nephrin knockdown, or targeted mutation of phosphorylated nephrin tyrosine residues 1176 and 1193 abrogated the actions of MRE-269 in MIN6 cells. Because nephrin is important to glomerular permselectivity, we next set out to determine whether IP receptor agonism similarly affects nephrin phosphorylation in podocytes. Expression of the IP receptor in podocytes was confirmed in cultured cells by immunoblotting and quantitative real-time PCR and in mouse kidneys by immunogold electron microscopy, and its agonism 1) increased cAMP, 2) activated PKA, 3) phosphorylated nephrin, and 4) attenuated albumin transcytosis. Finally, treatment of diabetic endothelial nitric oxide synthase knockout mice with selexipag augmented renal nephrin phosphorylation and attenuated albuminuria development independently of glucose change. Collectively, these observations describe a pharmacological strategy that posttranslationally modifies nephrin and the effects of this strategy in the pancreas and in the kidney.


Asunto(s)
Nefropatías Diabéticas/prevención & control , Células Secretoras de Insulina/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Podocitos/efectos de los fármacos , Receptores de Epoprostenol/agonistas , Acetamidas/uso terapéutico , Acetatos/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Insulina/agonistas , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fosforilación/efectos de los fármacos , Podocitos/metabolismo , Podocitos/patología , Podocitos/ultraestructura , Profármacos/uso terapéutico , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Pirazinas/farmacología , Pirazinas/uso terapéutico , Interferencia de ARN , Receptores de Epoprostenol/genética , Receptores de Epoprostenol/metabolismo , Insuficiencia Renal/complicaciones , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Insuficiencia Renal/prevención & control
15.
J Am Soc Nephrol ; 27(7): 2021-34, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26534922

RESUMEN

Epigenetic regulation of oxidative stress is emerging as a critical mediator of diabetic nephropathy. In diabetes, oxidative damage occurs when there is an imbalance between reactive oxygen species generation and enzymatic antioxidant repair. Here, we investigated the function of the histone methyltransferase enzyme enhancer of zeste homolog 2 (EZH2) in attenuating oxidative injury in podocytes, focusing on its regulation of the endogenous antioxidant inhibitor thioredoxin interacting protein (TxnIP). Pharmacologic or genetic depletion of EZH2 augmented TxnIP expression and oxidative stress in podocytes cultured under high-glucose conditions. Conversely, EZH2 upregulation through inhibition of its regulatory microRNA, microRNA-101, downregulated TxnIP and attenuated oxidative stress. In diabetic rats, depletion of EZH2 decreased histone 3 lysine 27 trimethylation (H3K27me3), increased glomerular TxnIP expression, induced podocyte injury, and augmented oxidative stress and proteinuria. Chromatin immunoprecipitation sequencing revealed H3K27me3 enrichment at the promoter of the transcription factor Pax6, which was upregulated on EZH2 depletion and bound to the TxnIP promoter, controlling expression of its gene product. In high glucose-exposed podocytes and the kidneys of diabetic rats, the lower EZH2 expression detected coincided with upregulation of Pax6 and TxnIP. Finally, in a gene expression array, TxnIP was among seven of 30,854 genes upregulated by high glucose, EZH2 depletion, and the combination thereof. Thus, EZH2 represses the transcription factor Pax6, which controls expression of the antioxidant inhibitor TxnIP, and in diabetes, downregulation of EZH2 promotes oxidative stress. These findings expand the extent to which epigenetic processes affect the diabetic kidney to include antioxidant repair.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Estrés Oxidativo , Podocitos/metabolismo , Animales , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
16.
Endocrinology ; 156(3): 1121-32, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25549045

RESUMEN

Binding of the receptor CXCR4 to its ligand stromal cell-derived factor 1 (SDF-1) promotes cell survival and is under the influence of a number of regulatory processes including enzymatic ligand inactivation by endopeptidases such as matrix metalloproteinase 9 (MMP-9). In light of the pivotal role that the SDF-1/CXCR4 axis plays in renal development and in the pathological growth of renal cells, we explored the function of this pathway in diabetic rats and in biopsies from patients with diabetic nephropathy, hypothesizing that the pro-survival effects of CXCR4 in resident cells would attenuate renal injury. Renal CXCR4 expression was observed to be increased in diabetic rats, whereas antagonism of the receptor unmasked albuminuria and accelerated tubular epithelial cell death. In cultured cells, CXCR4 blockade promoted tubular cell apoptosis, up-regulated Bcl-2-associated death promoter, and prevented high glucose/SDF-1-augmented phosphorylation of the pro-survival kinase, Akt. Although CXCR4 expression was also increased in biopsy tissue from patients with diabetic nephropathy, serine 339 phosphorylation of the receptor, indicative of ligand engagement, was unaffected. Coincident with these changes in receptor expression but not activity, MMP-9 was also up-regulated in diabetic nephropathy biopsies. Supporting a ligand-inactivating effect of the endopeptidase, exposure of cultured cells to recombinant MMP-9 abrogated SDF-1 induced Akt phosphorylation. These observations demonstrate a potentially reno-protective role for CXCR4 in diabetes that is impeded in its actions in the human kidney by the coincident up-regulation of ligand-inactivating endopeptidases. Therapeutically intervening in this interplay may limit tubulointerstitial injury, the principal determinant of renal decline in diabetes.


Asunto(s)
Supervivencia Celular/fisiología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/fisiología , Túbulos Renales/citología , Receptores CXCR4/metabolismo , Albuminuria/metabolismo , Animales , Bencilaminas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ciclamas , Diabetes Mellitus Experimental , Nefropatías Diabéticas/metabolismo , Compuestos Heterocíclicos , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética
17.
J Am Soc Nephrol ; 25(1): 33-42, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24009238

RESUMEN

Vascular growth factors play an important role in maintaining the structure and integrity of the glomerular filtration barrier. In healthy adult glomeruli, the proendothelial survival factors vascular endothelial growth factor-A (VEGF-A) and angiopoietin-1 are constitutively expressed in glomerular podocyte epithelia. We demonstrate that this milieu of vascular growth factors is altered in streptozotocin-induced type 1 diabetic mice, with decreased angiopoietin-1 levels, VEGF-A upregulation, decreased soluble VEGF receptor-1 (VEGFR1), and increased VEGFR2 phosphorylation. This was accompanied by marked albuminuria, nephromegaly, hyperfiltration, glomerular ultrastructural alterations, and aberrant angiogenesis. We subsequently hypothesized that restoration of angiopoietin-1 expression within glomeruli might ameliorate manifestations of early diabetic glomerulopathy. Podocyte-specific inducible repletion of angiopoietin-1 in diabetic mice caused a 70% reduction of albuminuria and prevented diabetes-induced glomerular endothelial cell proliferation; hyperfiltration and renal morphology were unchanged. Furthermore, angiopoietin-1 repletion in diabetic mice increased Tie-2 phosphorylation, elevated soluble VEGFR1, and was paralleled by a decrease in VEGFR2 phosphorylation and increased endothelial nitric oxide synthase Ser(1177) phosphorylation. Diabetes-induced nephrin phosphorylation was also reduced in mice with angiopoietin-1 repletion. In conclusion, targeted angiopoietin-1 therapy shows promise as a renoprotective tool in the early stages of diabetic kidney disease.


Asunto(s)
Angiopoyetina 1/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/terapia , Terapia Molecular Dirigida , Angiopoyetina 1/deficiencia , Angiopoyetina 1/genética , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/terapia , Nefropatías Diabéticas/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Mutantes , Podocitos/metabolismo , Podocitos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
J Am Soc Nephrol ; 23(11): 1810-23, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22997257

RESUMEN

Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS(-/-) mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS(-/-) mice, even though it inhibited glomerular capillary enlargement in both. In eNOS(-/-) mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS(-/-) mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS(-/-) glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Óxido Nítrico Sintasa de Tipo III/deficiencia , Podocitos/metabolismo , Podocitos/patología , Albuminuria/etiología , Albuminuria/prevención & control , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Capilares/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Glucosa/metabolismo , Humanos , Glomérulos Renales/irrigación sanguínea , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/genética , Podocitos/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
19.
Micron ; 43(10): 1001-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22607953

RESUMEN

The renal glomerulus and its components have been intensively studied using microscopy - both light and electron - for decades and much has been learnt about their role in the pathogenesis of chronic kidney diseases such as diabetic nephropathy. In order to get more than purely qualitative information from the images, stereological tools have been applied to obtain unbiased quantitative data and thus allow structural-functional relationships to be explored. These techniques are likely to continue to be used in the coming decades in order to provide vital information about the disease process, complementing knowledge obtained from molecular techniques.


Asunto(s)
Glomérulos Renales/ultraestructura , Algoritmos , Animales , Cápsula Glomerular/ultraestructura , Endotelio/ultraestructura , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Podocitos/ultraestructura
20.
J Hypertens ; 29(6): 1175-84, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21505358

RESUMEN

BACKGROUND: The pro(renin) receptor is a 350 amino acid transmembrane protein, that on ligand binding, increases the catalytic efficiency of angiotensinogen cleavage by both prorenin and renin, augmenting angiotensin I formation at the cell surface. While implicated in a broad range of diseases, studies to date have focused on the kidney, particularly in the diabetic context. We sought to examine the site-specific expression of the pro(renin) receptor within the heart. METHODS: Using confocal microscopy, site-specific markers and transmission electron microscopy we assessed the location of the pro(renin) receptor in the heart at both cellular/sub-cellular levels. We assessed pro(renin) receptor expression in the setting of disease and blockade of the renin-angiotensin system, using the TGR[m(Ren2)-27] model of diabetic cardiomyopathy and the direct renin inhibitor, aliskiren. RESULTS: The pro(renin) receptor was found predominantly at the Z-disc and dyad of cardiac myocytes coinciding closely with the distributions of the vacuolar H⁺-ATPase and ryanodine receptor, known to be located within T-tubules and the sarcoplasmic reticulum's terminal cisternae, respectively. Pro(renin) receptor mRNA/protein abundance were increased ∼3-fold in the hearts of diabetic rats in association with diastolic dysfunction, myocyte hypertrophy and interstitial fibrosis (all P < 0.01). Direct renin inhibition reduced cardiac pro(renin) receptor expression in association with improved cardiac structure/function (all P < 0.05). CONCLUSION: Together, these findings are consistent with the notion that the pro(renin) receptor is a component of the vacuolar H⁺-ATPase, and that like the latter, is increased in the setting of cardiac stress and lowered by the administration of an ostensibly cardioprotective agent.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Miocardio/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Secuencia de Bases , Western Blotting , Cartilla de ADN , Cardiomiopatías Diabéticas/patología , Técnica del Anticuerpo Fluorescente , Silenciador del Gen , Ratas , Ratas Sprague-Dawley , Receptor de Prorenina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...