Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells Dev ; 23(13): 1524-34, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24548115

RESUMEN

Pluripotent stem cells (PSCs) offer unprecedented biomedical potential not only in relation to humans but also companion animals, particularly the horse. Despite this, attempts to generate bona fide equine embryonic stem cells have been unsuccessful. A very limited number of induced PSC lines have so far been generated from equine fibroblasts but their potential for directed differentiation into clinically relevant tissues has not been explored. In this study, we used retroviral vectors to generate induced pluripotent stem cells (iPSCs) with comparatively high efficiency from equine keratinocytes. Expression of endogenous PSC markers (OCT4, SOX2, LIN28, NANOG, DNMT3B, and REX1) was effectively restored in these cells, which could also form in vivo several tissue derivatives of the three germ layers, including functional neurons, keratinized epithelium, cartilage, bone, muscle, and respiratory and gastric epithelia. Comparative analysis of different reprogrammed cell lines revealed an association between the ability of iPSCs to form well-differentiated teratomas and the distinct endogenous expression of OCT4 and REX1 and reduced expression of viral transgenes. Importantly, unlike in previous studies, equine iPSCs were successfully expanded using simplified feeder-free culture conditions, constituting significant progress toward future biomedical applications. Further, under appropriate conditions equine iPSCs generated cells with features of cholinergic motor neurons including the ability to generate action potentials, providing the first report of functional cells derived from equine iPSCs. The ability to derive electrically active neurons in vitro from a large animal reveals highly conserved pathways of differentiation across species and opens the way for new and exciting applications in veterinary regenerative medicine.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Queratinocitos/fisiología , Neuronas/fisiología , Animales , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Células Nutrientes , Expresión Génica , Caballos , Ratones Endogámicos NOD , Ratones SCID , Esferoides Celulares/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
PLoS One ; 8(8): e71363, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977029

RESUMEN

Large animal models are an important resource for the understanding of human disease and for evaluating the applicability of new therapies to human patients. For many diseases, such as cone dystrophy, research effort is hampered by the lack of such models. Lentiviral transgenesis is a methodology broadly applicable to animals from many different species. When conjugated to the expression of a dominant mutant protein, this technology offers an attractive approach to generate new large animal models in a heterogeneous background. We adopted this strategy to mimic the phenotype diversity encounter in humans and generate a cohort of pigs for cone dystrophy by expressing a dominant mutant allele of the guanylate cyclase 2D (GUCY2D) gene. Sixty percent of the piglets were transgenic, with mutant GUCY2D mRNA detected in the retina of all animals tested. Functional impairment of vision was observed among the transgenic pigs at 3 months of age, with a follow-up at 1 year indicating a subsequent slower progression of phenotype. Abnormal retina morphology, notably among the cone photoreceptor cell population, was observed exclusively amongst the transgenic animals. Of particular note, these transgenic animals were characterized by a range in the severity of the phenotype, reflecting the human clinical situation. We demonstrate that a transgenic approach using lentiviral vectors offers a powerful tool for large animal model development. Not only is the efficiency of transgenesis higher than conventional transgenic methodology but this technique also produces a heterogeneous cohort of transgenic animals that mimics the genetic variation encountered in human patients.


Asunto(s)
Animales Modificados Genéticamente , Heterogeneidad Genética , Guanilato Ciclasa/genética , Células Fotorreceptoras Retinianas Conos/patología , Distrofias Retinianas/genética , Transgenes , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Genes Dominantes , Vectores Genéticos , Guanilato Ciclasa/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Lentivirus/genética , Datos de Secuencia Molecular , Mutación , Fenotipo , Células Fotorreceptoras Retinianas Conos/enzimología , Distrofias Retinianas/patología , Homología de Secuencia de Aminoácido , Índice de Severidad de la Enfermedad , Porcinos/genética , Agudeza Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...