Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2018: 1826170, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30151067

RESUMEN

Graviola (Annona muricata) is a small deciduous tropical evergreen fruit tree, belonging to the Annonaceae family, and is widely grown and distributed in tropical and subtropical regions around the world. The aerial parts of graviola have several functions: the fruits have been widely used as food confectionaries, while several preparations, especially decoctions of the bark, fruits, leaves, pericarp, seeds, and roots, have been extensively used in traditional medicine to treat multiple ailments including cancers by local communities in tropical Africa and South America. The reported therapeutic benefits of graviola against various human tumors and disease agents in in vitro culture and preclinical animal model systems are typically tested for their ability to specifically target the disease, while exerting little or no effect on normal cell viability. Over 212 phytochemical ingredients have been reported in graviola extracts prepared from different plant parts. The specific bioactive constituents responsible for the major anticancer, antioxidant, anti-inflammatory, antimicrobial, and other health benefits of graviola include different classes of annonaceous acetogenins (metabolites and products of the polyketide pathway), alkaloids, flavonoids, sterols, and others. This review summarizes the current understanding of the anticancer effects of A. muricata and its constituents on diverse cancer types and disease states, as well as efficacy and safety concerns. It also includes discussion of our current understanding of possible mechanisms of action, with the hope of further stimulating the development of improved and affordable therapies for a variety of ailments.


Asunto(s)
Annona/química , Antineoplásicos , Humanos
2.
Genes Nutr ; 13: 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008960

RESUMEN

BACKGROUND: Diminished brain levels of two neurohormones, 5-hydroxytryptamine (5-HT; serotonin) and 1,25-dihydroxyvitamin D3 (1,25D; active vitamin D metabolite), are proposed to play a role in the atypical social behaviors associated with psychological conditions including autism spectrum disorders and depression. We reported previously that 1,25D induces expression of tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway to 5-HT, in cultured rat serotonergic neuronal cells. However, other enzymes and transporters in the pathway of tryptophan metabolism had yet to be examined with respect to the actions of vitamin D. Herein, we probed the response of neuronal cells to 1,25D by quantifying mRNA expression of serotonin synthesis isozymes, TPH1 and TPH2, as well as expression of the serotonin reuptake transporter (SERT), and the enzyme responsible for serotonin catabolism, monoamine oxidase-A (MAO-A). We also assessed the direct production of serotonin in cell culture in response to 1,25D. RESULTS: Employing quantitative real-time PCR, we demonstrate that TPH-1/-2 mRNAs are 28- to 33-fold induced by 10 nM 1,25D treatment of cultured rat serotonergic neuronal cells (RN46A-B14), and the enhancement of TPH2 mRNA by 1,25D is dependent on the degree of neuron-like character of the cells. In contrast, examination of SERT, the gene product of which is a target for the SSRI-class of antidepressants, and MAO-A, which encodes the predominant catabolic enzyme in the serotonin pathway, reveals that their mRNAs are 51-59% repressed by 10 nM 1,25D treatment of RN46A-B14 cells. Finally, serotonin concentrations are significantly enhanced (2.9-fold) by 10 nM 1,25D in this system. CONCLUSIONS: These results are consistent with the concept that vitamin D maintains extracellular fluid serotonin concentrations in the brain, thereby offering an explanation for how vitamin D could influence the trajectory and development of neuropsychiatric disorders. Given the profile of gene regulation in cultured RN46A-B14 serotonergic neurons, we conclude that 1,25D acts not only to induce serotonin synthesis, but also functions at an indirect, molecular-genomic stage to mimic SSRIs and MAO inhibitors, likely elevating serotonin in the CNS. These data suggest that optimal vitamin D status may contribute to improving behavioral pathophysiologies resulting from dysregulation of serotonergic neurotransmission.

3.
Int J Mol Sci ; 19(6)2018 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-29914183

RESUMEN

Non-melanoma skin cancers (NMSCs) are the leading cause of skin cancer-related morbidity and mortality. Effective strategies are needed to control NMSC occurrence and progression. Non-toxic, plant-derived extracts have been shown to exert multiple anti-cancer effects. Graviola (Annona muricata), a tropical fruit-bearing plant, has been used in traditional medicine against multiple human diseases including cancer. The current study investigated the effects of graviola leaf and stem extract (GLSE) and its solvent-extracted fractions on two human NMSC cell lines, UW-BCC1 and A431. GLSE was found to: (i) dose-dependently suppress UW-BCC1 and A431 cell growth, motility, wound closure, and clonogenicity; (ii) induce G0/G1 cell cycle arrest by downregulating cyclin/cdk factors while upregulating cdk inhibitors, and (iii) induce apoptosis as evidenced by cleavage of caspases-3, -8 and PARP. Further, GLSE suppressed levels of activated hedgehog (Hh) pathway components Smo, Gli 1/2, and Shh while inducing SuFu. GLSE also decreased the expression of pro-apoptotic protein Bax while decreasing the expression of the anti-apoptotic protein Bcl-2. We determined that these activities were concentrated in an acetogenin/alkaloid-rich dichloromethane subfraction of GLSE. Our data identify graviola extracts and their constituents as promising sources for new chemopreventive and therapeutic agent(s) to be further developed for the control of NMSCs.


Asunto(s)
Annona/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Neoplasias Cutáneas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Transducción de Señal , Ensayo de Tumor de Célula Madre
4.
Nutrients ; 10(2)2018 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-29401702

RESUMEN

Treatment with 1,25-dihydroxyvitamin D3 (1,25D) improves psoriasis symptoms, possibly by inducing the expression of late cornified envelope (LCE)3 genes involved in skin repair. In psoriasis patients, the majority of whom harbor genomic deletion of LCE3B and LCE3C (LCE3C_LCE3B-del), we propose that certain dietary analogues of 1,25D activate the expression of residual LCE3A/LCE3D/LCE3E genes to compensate for the loss of LCE3B/LCE3C in the deletant genotype. Herein, human keratinocytes (HEKn) homozygous for LCE3C_LCE3B-del were treated with docosahexaenoic acid (DHA) and curcumin, two low-affinity, nutrient ligands for the vitamin D receptor (VDR). DHA and curcumin induce the expression of LCE3A/LCE3D/LCE3E mRNAs at concentrations corresponding to their affinity for VDR. Moreover, immunohistochemical quantitation revealed that the treatment of keratinocytes with DHA or curcumin stimulates LCE3 protein expression, while simultaneously opposing the tumor necrosis factor-alpha (TNFα)-signaled phosphorylation of mitogen activated protein (MAP) kinases, p38 and Jun amino-terminal kinase (JNK), thereby overcoming inflammation biomarkers elicited by TNFα challenge. Finally, DHA and curcumin modulate two transcription factors relevant to psoriatic inflammation, the activator protein-1 factor Jun B and the nuclear receptor NR4A2/NURR1, that is implicated as a mediator of VDR ligand-triggered gene control. These findings provide insights into the mechanism(s) whereby dietary VDR ligands alter inflammatory and barrier functions relevant to skin repair, and may provide a molecular basis for improved treatments for mild/moderate psoriasis.


Asunto(s)
Curcumina/farmacología , Ácidos Docosahexaenoicos/farmacología , Queratinocitos/efectos de los fármacos , Psoriasis/genética , Receptores de Calcitriol/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Dieta , Regulación de la Expresión Génica/efectos de los fármacos , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Queratinocitos/metabolismo , Ligandos , Psoriasis/prevención & control , Ratas , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Piel/metabolismo
5.
J Cell Biochem ; 119(1): 69-80, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28543886

RESUMEN

The mammalian hairless protein (HR) is a 130 kDa nuclear transcription factor that is essential for proper skin and hair follicle function. Previous studies have focused on the role of HR in skin maintenance and hair cycling. However, the hairless gene (HR) is also expressed in brain and other tissues, where its role remains poorly understood. HR has been reported to contain functional domains that potentially serve in DNA binding, histone demethylation, nuclear translocation and protein-protein interactions. Indeed, HR has been shown to interact with and repress the action of the nuclear receptors for vitamin D and thyroid hormone as well as RAR-related orphan receptor alpha, possibly via recruitment of histone deacetylases. HR may also have important functions in non-skin tissues given that nearly 200 HR mutations have been identified in patients with various cancers, including prostate, breast, lung, melanoma, uterine, and glioma. This suggests that HR and/or mutants thereof have relevance to the growth and survival of cancer cells. For example, the reported intrinsic histone H3K9 demethylase activity of HR may activate dormant genes to contribute to carcinogenesis. Alternatively, the demonstrated ability of HR to interact with p53 and/or the p53 DNA response element to influence p53-regulated pathways may explain, at least in part, why many cancers express mutated HR proteins. In this review, we summarize the current knowledge of HR bioactions, how HR mutations may be contributing to alopecia as well as to cancer, and, finally, outline future directions in the study of this largely enigmatic nuclear protein. J. Cell. Biochem. 119: 69-80, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Alopecia/genética , Neoplasias Encefálicas/genética , Proteínas Co-Represoras/metabolismo , Regulación de la Expresión Génica , Enfermedades del Cabello/genética , Folículo Piloso/anomalías , Humanos , Enfermedades Cutáneas Vesiculoampollosas/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo
6.
J Steroid Biochem Mol Biol ; 172: 117-129, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28636886

RESUMEN

The hormonal metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), binds to the vitamin D receptor (VDR) and promotes heterodimerization of VDR with a retinoid-X-receptor (RXR) to genomically regulate diverse cellular processes. Herein, it is revealed for the first time that VDR is post-translationally acetylated, and that VDR immunoprecipitated from human embryonic kidney (HEK293) cells displays a dramatic decrease in acetylated receptor in the presence of 1,25D-ligand, sirtuin-1 (SIRT1) deacetylase, or the resveratrol activator of SIRT1. To elucidate the functional significance of VDR deacetylation, vitamin-d-responsive-element (VDRE)-based transcriptional assays were performed to determine if deacetylase overexpression affects VDR/VDRE-driven transcription. In HEK293 kidney and TE85 bone cells, co-transfection of low amounts (1-5ng) of a SIRT1-expression vector elicits a reproducible and statistically significant enhancement (1.3- to 2.6-fold) in transcription mediated by VDREs from the CYP3A4 and cyp24a1 genes, where the magnitude of response to 1,25D-ligand is 6- to 30-fold. Inhibition of SIRT1 via EX-527, or utilization of a SIRT1 loss-of-function mutant (H363Y), resulted in abrogation of SIRT1-mediated VDR potentiation. Studies with a novel, non-acetylatable VDR mutant (K413R) showed that the mutant VDR possesses enhanced responsiveness to 1,25D, in conjunction with reduced, but still significant, sensitivity to exogenous SIRT1, indicating that acetylation of lysine 413 is relevant, but that other acetylated residues in VDR contribute to modulation of its activity. We conclude that the acetylation of VDR comprises a negative feedback loop that attenuates 1,25D-VDR signaling. This regulatory loop is reversed by SIRT1-catalyzed deacetylation of VDR to amplify VDR signaling and 1,25D actions.


Asunto(s)
Calcitriol/farmacología , Citocromo P-450 CYP3A/metabolismo , Osteoblastos/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Receptores X Retinoide/metabolismo , Sirtuina 1/metabolismo , Acetilación/efectos de los fármacos , Animales , Calcitriol/metabolismo , Carbazoles/farmacología , Línea Celular Tumoral , Citocromo P-450 CYP3A/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Mutación , Osteoblastos/citología , Osteoblastos/metabolismo , Unión Proteica , Ratas , Receptores de Calcitriol/genética , Receptores X Retinoide/genética , Transducción de Señal , Sirtuina 1/genética , Transcripción Genética , Elemento de Respuesta a la Vitamina D
7.
J Cell Biochem ; 118(2): 341-350, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27355563

RESUMEN

The mammalian hairless (Hr) protein plays critical roles in skin and brain tissues, but how it interacts with DNA and partner protein is only now being defined. Our initial tests of four consensus response elements, revealed that rat Hr can specifically bind to a consensus p53 response element (p53RE), 5'-AGACATGCCTAGACATGCCT-3', but not to response elements for NF-κB, TCF4 or Sp1. We then employed ChIP assays which verified that human HR binds to a p53RE of the GADD45A gene in both HEK293 (embryonic kidney) and U87 (glioblastoma) cells. Further, HR was shown to interact directly with the p53 protein in a co-immunoprecipitation assay. Cotransfections with p53RE reporter gene constructs revealed that rat Hr can boost p53-mediated transactivation of a reporter gene linked to the GADD45A p53RE, but blunts p53-mediated transactivation when the reporter gene is linked to a p21 promoter fragment containing a p53RE, with implications for the regulation of these two cell cycle control genes. Finally, our investigations of HR phosphorylation revealed that rat Hr is a substrate for PKC, but not PKA, and that human HR is phosphorylated in intact U87 cells at Ser-416, located in a highly conserved region which partially fulfills the criteria of a PKC site. We propose that mammalian Hr is a phosphoprotein which can exert cross-talk with the p53 pathway with important implications for the regulation of cell proliferation and differentiation in tissues such as skin and brain where Hr is highly expressed. J. Cell. Biochem. 118: 341-350, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/biosíntesis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Especificidad de Órganos , Fosfoproteínas/genética , Fosforilación/genética , Elementos de Respuesta , Piel/metabolismo , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética
8.
PLoS One ; 11(12): e0168278, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27942020

RESUMEN

The evolution, molecular behavior, and physiological function of nuclear receptors are of particular interest given their diverse roles in regulating essential biological processes. The vitamin D receptor (VDR) is well known for its canonical roles in calcium homeostasis and skeletal maintenance. Additionally, VDR has received an increased amount of attention due to the discovery of numerous non-calcemic functions, including the detoxification of lithocholic acid. Lithocholic acid is a toxic metabolite of chenodeoxycholic acid, a primary bile acid. The partnership between the VDR and lithocholic acid has been hypothesized to be a recent adaptation that evolved to mediate the detoxification and elimination of lithocholic acid from the gut. This partnership is speculated to be limited to higher vertebrates (birds and mammals), as lower vertebrates do not synthesize the parent compound of lithocholic acid. However, the molecular functions associated with the observed insensitivity of basal VDRs to lithocholic acid have not been explored. Here we characterize canonical nuclear receptor functions of VDRs from select species representing key nodes in vertebrate evolution and span a range of bile salt phenotypes. Competitive ligand binding assays revealed that the receptor's affinity for lithocholic acid is highly conserved across species, suggesting that lithocholic acid affinity is an ancient and non-adaptive trait. However, transient transactivation assays revealed that lithocholic acid-mediated VDR activation might have evolved more recently, as the non-mammalian receptors did not respond to lithocholic acid unless exogenous coactivator proteins were co-expressed. Subsequent functional assays indicated that differential lithocholic acid-mediated receptor activation is potentially driven by differential protein-protein interactions between VDR and nuclear receptor coregulator proteins. We hypothesize that the vitamin D receptor-lithocholic acid partnership evolved as a by-product of natural selection on the ligand-receptor partnership between the vitamin D receptor and the native VDR ligand: 1α,25-dihydroxyvitamin D3, the biologically active metabolite of vitamin D3.


Asunto(s)
Evolución Biológica , Ácido Litocólico/metabolismo , Receptores de Calcitriol/metabolismo , Animales , Células Hep G2 , Humanos , Vertebrados
9.
Vitam Horm ; 100: 165-230, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26827953

RESUMEN

1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging.


Asunto(s)
Glucuronidasa/metabolismo , Vitamina D/análogos & derivados , Animales , Factor-23 de Crecimiento de Fibroblastos , Regulación de la Expresión Génica/fisiología , Glucuronidasa/genética , Humanos , Proteínas Klotho , Transducción de Señal/fisiología , Vitamina D/química , Vitamina D/farmacología
10.
J Endocrinol ; 226(3): 155-66, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26148725

RESUMEN

In a closed endocrine loop, 1,25-dihydroxyvitamin D3 (1,25D) induces the expression of fibroblast growth factor 23 (FGF23) in bone, with the phosphaturic peptide in turn acting at kidney to feedback repress CYP27B1 and induce CYP24A1 to limit the levels of 1,25D. In 3T3-L1 differentiated adipocytes, 1,25D represses FGF23 and leptin expression and induces C/EBPß, but does not affect leptin receptor transcription. Conversely, in UMR-106 osteoblast-like cells, FGF23 mRNA concentrations are upregulated by 1,25D, an effect that is blunted by lysophosphatidic acid, a cell-surface acting ligand. Progressive truncation of the mouse FGF23 proximal promoter linked in luciferase reporter constructs reveals a 1,25D-responsive region between -400 and -200  bp. A 0.6  kb fragment of the mouse FGF23 promoter, linked in a reporter construct, responds to 1,25D with a fourfold enhancement of transcription in transfected K562 cells. Mutation of either an ETS1 site at -346  bp, or an adjacent candidate vitamin D receptor (VDR)/Nurr1-element, in the 0.6  kb reporter construct reduces the transcriptional activity elicited by 1,25D to a level that is not significantly different from a minimal promoter. This composite ETS1-VDR/Nurr1 cis-element may function as a switch between induction (osteocytes) and repression (adipocytes) of FGF23, depending on the cellular setting of transcription factors. Moreover, experiments demonstrate that a 1 kb mouse FGF23 promoter-reporter construct, transfected into MC3T3-E1 osteoblast-like cells, responds to a high calcium challenge with a statistically significant 1.7- to 2.0-fold enhancement of transcription. Thus, the FGF23 proximal promoter harbors cis elements that drive responsiveness to 1,25D and calcium, agents that induce FGF23 to curtail the pathologic consequences of their excess.


Asunto(s)
Adipocitos/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Osteocitos/efectos de los fármacos , Vitamina D/análogos & derivados , Adipocitos/metabolismo , Animales , Línea Celular , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Lisofosfolípidos/farmacología , Ratones , Osteocitos/metabolismo , Regiones Promotoras Genéticas , Ratas , Regulación hacia Arriba/efectos de los fármacos , Vitamina D/farmacología
11.
FASEB J ; 29(9): 4023-35, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26071405

RESUMEN

To investigate vitamin D-related control of brain-expressed genes, candidate vitamin D responsive elements (VDREs) at -7/-10 kb in human tryptophan hydroxylase (TPH)2 were probed. Both VDREs bound the vitamin D receptor (VDR)-retinoid X receptor (RXR) complex and drove reporter gene transcription in response to 1,25-dihydroxyvitamin D3 (1,25D). Brain TPH2 mRNA, encoding the rate-limiting enzyme in serotonin synthesis, was induced 2.2-fold by 10 nM 1,25D in human U87 glioblastoma cells and 47.8-fold in rat serotonergic RN46A-B14 cells. 1,25D regulation of leptin (Lep), encoding a serotoninlike satiety factor, was also examined. In mouse adipocytes, 1,25D repressed leptin mRNA levels by at least 84%, whereas 1,25D induced leptin mRNA 15.1-fold in human glioblastoma cells. Chromatin immunoprecipitation sequencing analysis of the mouse Lep gene in response to 1,25D revealed a cluster of regulatory sites (cis-regulatory module; CRM) at -28 kb that 1,25D-dependently docked VDR, RXR, C/EBPß, and RUNX2. This CRM harbored 3 VDREs and single C/EBPß and RUNX2 sites. Therefore, the expression of human TPH2 and mouse Lep are governed by 1,25D, potentially via respective VDREs located at -7/-10 kb and -28 kb. These results imply that vitamin D affects brain serotonin concentrations, which may be relevant to psychiatric disorders, such as autism, and may control leptin levels and affect eating behavior.


Asunto(s)
Conducta Animal/efectos de los fármacos , Calcitriol/farmacología , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Leptina/biosíntesis , Triptófano Hidroxilasa/biosíntesis , Células 3T3-L1 , Animales , Trastorno Autístico/metabolismo , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , ARN Mensajero/biosíntesis , Elementos de Respuesta/efectos de los fármacos
12.
PLoS One ; 10(4): e0122853, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25855982

RESUMEN

The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been driven by changes in protein-protein interactions between VDR and essential coregulators.


Asunto(s)
Evolución Molecular , Peces/genética , Petromyzon/genética , Filogenia , Receptores de Calcitriol/genética , Rajidae/genética , Animales , Secuencia de Bases , Clonación Molecular , Biología Computacional , Ensayo de Cambio de Movilidad Electroforética , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Unión Proteica , Mapeo de Interacción de Proteínas , Análisis de Secuencia de ADN , Especificidad de la Especie , Técnicas del Sistema de Dos Híbridos
13.
J Cell Biochem ; 116(6): 1130-43, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25536521

RESUMEN

The 1,25-dihydroxyvitamin D3 (1,25D) hormone is derived from vitamin D generated in skin or obtained from the diet, and binds to and activates the vitamin D receptor (VDR) in target tissues including kidney, colon/small intestine, and bone/muscle. We tested resveratrol for its ability to modulate VDR signaling, using vitamin D responsive element (VDRE) and mammalian 2-hybrid (M2H) transcriptional system technology. Via VDRE-based assays in kidney, colon and myoblast cells, VDR-mediated transcription was activated by resveratrol, and a cooperative effect on transactivation was observed with resveratrol plus 1,25D. The M2H assay revealed a modest, resveratrol-induced dimerization of VDR with its retinoid X receptor (RXR) heteropartner. Cells treated with both resveratrol and 1,25D displayed synergistic stimulation of VDR-RXR heterodimerization, while resveratrol antagonized rexinoid-mediated RXR-RXR homodimerization. Increased transactivation in response to resveratrol was also observed with a subset of other nuclear receptors and their respective cognate responsive elements. Evaluation of wild-type versus a ligand-binding domain mutant VDR revealed that hormone-responsiveness to 1,25D was severely depressed, while the response to resveratrol was only moderately attenuated. Moreover, radiolabeled 1,25D-displacement assays demonstrated an increase in VDR-bound 1,25D in the presence of resveratrol. Thus, resveratrol may affect VDR and other nuclear receptors indirectly, likely via the ability of resveratrol to: (1) potentiate 1,25D binding to VDR; (2) activate RXR; and/or (3) stimulate SIRT1, an enzyme known to deacetylate nuclear receptors. The results of this study elucidate a possible pathway for crosstalk between two nutritionally derived lipids, vitamin D and resveratrol, both of which converge on VDR signaling.


Asunto(s)
Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Estilbenos/farmacología , Animales , Células CACO-2 , Línea Celular , Células HCT116 , Humanos , Ratones , Unión Proteica/efectos de los fármacos , Receptores de Calcitriol/genética , Receptores Citoplasmáticos y Nucleares/genética , Resveratrol , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Transducción de Señal/efectos de los fármacos , Elemento de Respuesta a la Vitamina D/genética , Elemento de Respuesta a la Vitamina D/fisiología
14.
Endocrinology ; 155(12): 4641-54, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25279795

RESUMEN

The diversity and success of teleost fishes (Actinopterygii) has been attributed to three successive rounds of whole-genome duplication (WGD). WGDs provide a source of raw genetic material for evolutionary forces to act upon, resulting in the divergence of genes with altered or novel functions. The retention of multiple gene pairs (paralogs) in teleosts provides a unique opportunity to study how genes diversify and evolve after a WGD. This study examines the hypothesis that vitamin D receptor (VDR) paralogs (VDRα and VDRß) from two distantly related teleost orders have undergone functional divergence subsequent to the teleost-specific WGD. VDRα and VDRß paralogs were cloned from the Japanese medaka (Beloniformes) and the zebrafish (Cypriniformes). Initial transactivation studies using 1α, 25-dihydroxyvitamin D3 revealed that although VDRα and VDRß maintain similar ligand potency, the maximum efficacy of VDRß was significantly attenuated compared with VDRα in both species. Subsequent analyses revealed that VDRα and VDRß maintain highly similar ligand affinities; however, VDRα demonstrated preferential DNA binding compared with VDRß. Protein-protein interactions between the VDR paralogs and essential nuclear receptor coactivators were investigated using transactivation and mammalian two-hybrid assays. Our results imply that functional differences between VDRα and VDRß occurred early in teleost evolution because they are conserved between distantly related species. Our results further suggest that the observed differences may be associated with differential protein-protein interactions between the VDR paralogs and coactivators. We speculate that the observed functional differences are due to subtle ligand-induced conformational differences between the two paralogs, leading to divergent downstream functions.


Asunto(s)
Calcitriol/metabolismo , Evolución Molecular , Proteínas de Peces/genética , Genoma , Receptores de Calcitriol/genética , Animales , Proteínas de Peces/metabolismo , Duplicación de Gen , Coactivadores de Receptor Nuclear/metabolismo , Oryzias , Receptores de Calcitriol/metabolismo , Receptores X Retinoide/metabolismo , Pez Cebra
15.
Biochem Biophys Res Commun ; 443(4): 1275-9, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24393842

RESUMEN

The PSORS4 genetic risk factor for psoriasis is a deletion of two late cornified envelope (LCE) genes (LCE3C_LCE3Bdel) in a cluster of five LCE3 genes with a proposed role in skin repair. We previously showed that 1,25-dihydroxyvitamin D3 (1,25D) modestly upregulates transcripts from all five LCE3 genes as monitored by real time PCR in primary human keratinocytes. Herein we report that cyanidin, a plant-derived compound with anti-inflammatory/anti-oxidant properties, upregulates expression of all five LCE3 genes in cultures of differentiating primary human keratinocytes to a greater extent that does 1,25D. This action of cyanidin is dependent on the differentiation state of the keratinocytes, with a stronger effect after the cells have been incubated with 1.2mM calcium for 24h. Competition displacement assays using radiolabeled 1,25D revealed that cyanidin directly competes as a ligand for vitamin D receptor (VDR) binding with an estimated IC50 of 500µM. However, 20µM cyanidin is sufficient to upregulate LCE3 genes. The 25-fold discrepancy between the cyanidin concentration required for upregulating LCE3 genes in intact keratinocytes vs. that required for direct binding to VDR in vitro suggests that cyanidin may be: (a) metabolized to a more active VDR ligand in keratinocytes and/or (b) functioning via a non-VDR mediated mechanism. The fact that cyanidin is the most potent upregulator of global LCE3 gene expression reported to date suggests that this or related compounds may have potential in psoriasis therapy.


Asunto(s)
Antocianinas/farmacología , Proteínas Ricas en Prolina del Estrato Córneo/genética , Psoriasis/genética , Antocianinas/metabolismo , Unión Competitiva , Células Cultivadas , Eliminación de Gen , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ligandos , Familia de Multigenes , Psoriasis/tratamiento farmacológico , Psoriasis/etiología , Receptores de Calcitriol/metabolismo , Factores de Riesgo , Regulación hacia Arriba/efectos de los fármacos , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Vitamina D/farmacología
16.
J Endocrinol ; 220(2): 165-78, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24190897

RESUMEN

The vitamin D receptor (VDR), but not its hormonal ligand, 1,25-dihydroxyvitamin D3 (1,25D), is required for the progression of the mammalian hair cycle. We studied three genes relevant to hair cycle signaling, DKKL1 (Soggy), SOSTDC1 (Wise), and HR (Hairless), to determine whether their expression is regulated by VDR and/or its 1,25D ligand. DKKL1 mRNA was repressed 49-72% by 1,25D in primary human and CCD-1106 KERTr keratinocytes; a functional vitamin D responsive element (VDRE) was identified at -9590 bp in murine Soggy. Similarly, SOSTDC1 mRNA was repressed 41-59% by 1,25D in KERTr and primary human keratinocytes; a functional VDRE was located at -6215 bp in human Wise. In contrast, HR mRNA was upregulated 1.56- to 2.77-fold by 1,25D in primary human and KERTr keratinocytes; a VDRE (TGGTGAgtgAGGACA) consisting of an imperfect direct repeat separated by three nucleotides (DR3) was identified at -7269 bp in the human Hairless gene that mediated dramatic induction, even in the absence of 1,25D ligand. In parallel, a DR4 thyroid hormone responsive element, TGGTGAggccAGGACA, was identified at +1304 bp in the human HR gene that conferred tri-iodothyronine (T3)-independent transcriptional activation. Because the thyroid hormone receptor controls HR expression in the CNS, whereas VDR functions in concert with the HR corepressor specifically in skin, a model is proposed wherein unliganded VDR upregulates the expression of HR, the gene product of which acts as a downstream comodulator to feedback-repress DKKL1 and SOSTDC1, resulting in integration of bone morphogenic protein and Wnt signaling to drive the mammalian hair cycle and/or influencing epidermal function.


Asunto(s)
Queratinocitos/metabolismo , Proteínas Nucleares/genética , Proteínas/genética , Proteínas de Unión al ARN/genética , Receptores de Calcitriol/fisiología , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Células COS , Células CACO-2 , Células Cultivadas , Chlorocebus aethiops , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Elemento de Respuesta a la Vitamina D/genética
17.
Arch Dermatol Res ; 305(10): 867-78, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23839497

RESUMEN

Psoriasis is a chronic inflammatory skin disease featuring abnormal keratinocyte proliferation and differentiation. A genetic risk factor for psoriasis (PSORS4) is a deletion of LCE3B and LCE3C genes encoding structural proteins in terminally differentiated keratinocytes. Because analogs of 1,25-dihydroxyvitamin D3 (1,25D) are used in psoriasis treatment, we hypothesized that 1,25D acts via the vitamin D receptor (VDR) to upregulate expression of LCE 3A/3D/3E genes, potentially mitigating the absence of LCE3B/LCE3C gene products. Results in a human keratinocyte line, HaCaT, suggested that 1,25D, low affinity VDR ligands docosahexaenoic acid and curcumin, along with a novel candidate ligand, delphinidin, induce LCE transcripts as monitored by qPCR. Further experiments in primary human keratinocytes preincubated with 1.2 mM calcium indicated that 1,25D and 10 µM delphinidin upregulate all five LCE3 genes (LCE3A-E). Competition binding assays employing radiolabeled 1,25D revealed that delphinidin binds VDR weakly (IC50 ≈ 1 mM). However, 20 µM delphinidin was capable of upregulating a luciferase reporter gene in a VDRE-dependent manner in a transfected keratinocyte cell line (KERTr). These results are consistent with a scenario in which delphinidin is metabolized to an active compound that then stimulates LCE3 transcription in a VDR/VDRE-dependent manner. We propose that upregulation of LCE genes may be part of the therapeutic effect of 1,25D to ameliorate psoriasis by providing sufficient LCE proteins, especially in individuals missing the LCE3B and 3C genes. Results with delphinidin further suggest that this compound or its metabolite(s) might offer an alternative to 1,25D in psoriasis therapy.


Asunto(s)
Antocianinas/farmacología , Calcitriol/farmacología , Proteínas Ricas en Prolina del Estrato Córneo/genética , Psoriasis/tratamiento farmacológico , Antocianinas/metabolismo , Calcio/farmacología , Línea Celular , Curcumina/farmacología , Ácidos Docosahexaenoicos/farmacología , Células HEK293 , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Psoriasis/genética , Receptores de Calcitriol/metabolismo , Riesgo , Regulación hacia Arriba
18.
Calcif Tissue Int ; 92(2): 77-98, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22782502

RESUMEN

The hormonal metabolite of vitamin D, 1α,25-dihydroxyvitamin D(3) (1,25D), initiates biological responses via binding to the vitamin D receptor (VDR). When occupied by 1,25D, VDR interacts with the retinoid X receptor (RXR) to form a heterodimer that binds to vitamin D responsive elements in the region of genes directly controlled by 1,25D. By recruiting complexes of either coactivators or corepressors, ligand-activated VDR-RXR modulates the transcription of genes encoding proteins that promulgate the traditional functions of vitamin D, including signaling intestinal calcium and phosphate absorption to effect skeletal and calcium homeostasis. Thus, vitamin D action in a particular cell depends upon the metabolic production or delivery of sufficient concentrations of the 1,25D ligand, expression of adequate VDR and RXR coreceptor proteins, and cell-specific programming of transcriptional responses to regulate select genes that encode proteins that function in mediating the effects of vitamin D. For example, 1,25D induces RANKL, SPP1 (osteopontin), and BGP (osteocalcin) to govern bone mineral remodeling; TRPV6, CaBP(9k), and claudin 2 to promote intestinal calcium absorption; and TRPV5, klotho, and Npt2c to regulate renal calcium and phosphate reabsorption. VDR appears to function unliganded by 1,25D in keratinocytes to drive mammalian hair cycling via regulation of genes such as CASP14, S100A8, SOSTDC1, and others affecting Wnt signaling. Finally, alternative, low-affinity, non-vitamin D VDR ligands, e.g., lithocholic acid, docosahexaenoic acid, and curcumin, have been reported. Combined alternative VDR ligand(s) and 1,25D/VDR control of gene expression may delay chronic disorders of aging such as osteoporosis, type 2 diabetes, cardiovascular disease, and cancer.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Vitamina D/fisiología , Animales , Humanos , Receptores de Calcitriol/biosíntesis
19.
Calcif Tissue Int ; 92(4): 339-53, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23263654

RESUMEN

Fibroblast growth factor-23 (FGF23) is a circulating hormone that acts to correct hyperphosphatemic states by inhibiting renal phosphate reabsorption and to prevent hypervitaminosis D by feedback repressing 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) biosynthesis. FGF23 gene expression in the osteoblast/osteocyte is induced by the nuclear vitamin D receptor (VDR) bound to 1,25(OH)2D3, but cycloheximide sensitivity of this induction suggests that it may occur largely via secondary mechanisms requiring cooperating transcription factors. We therefore sought to identify 1,25(OH)2D3-regulated transcription factors that might impact FGF23 expression. Although neither leptin nor interleukin-6 (IL-6) alone affects FGF23 expression, leptin treatment was found to potentiate 1,25(OH)2D3 upregulation of FGF23 in UMR-106 cells, whereas IL-6 treatment blunted this upregulation. Genomic analyses revealed conserved binding sites for STATs (signal transduction mediators of leptin and IL-6 action) along with transcription factor ETS1 in human and other mammalian FGF23 genes. Further, STAT3, STAT1, ETS1, and VDR mRNAs were induced in a dose-dependent manner by 1,25(OH)2D3 in UMR-106 cells. Bioinformatic analysis identified nine potential VDREs in a genomic interval containing human FGF23. Six of the putative VDREs were capable of mediating direct transcriptional activation of a heterologous reporter gene when bound by a 1,25(OH)2D3-liganded VDR complex. A model is proposed wherein 1,25(OH)2D3 upregulates FGF23 production directly via multiple VDREs and indirectly via induction of STAT3, ETS1, and VDR transcription factors that are then activated via cell surface and intracellular signaling to cooperate in the induction of FGF23 through DNA looping and generation of euchromatin architecture.


Asunto(s)
Huesos/metabolismo , Calcitriol/farmacología , Factores de Crecimiento de Fibroblastos/metabolismo , Interleucina-6/farmacología , Leptina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Huesos/efectos de los fármacos , Huesos/patología , Células COS , Calcitriol/metabolismo , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Interleucina-6/metabolismo , Leptina/metabolismo , Modelos Animales , Osteosarcoma/metabolismo , Osteosarcoma/patología , Ratas , Receptores de Calcitriol/metabolismo , Factores de Transcripción STAT/metabolismo
20.
Rev Endocr Metab Disord ; 13(1): 57-69, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21932165

RESUMEN

1,25-dihydroxyvitamin D (1,25D), through association with the nuclear vitamin D receptor (VDR), exerts control over a novel endocrine axis consisting of the bone-derived hormone FGF23, and the kidney-expressed klotho, CYP27B1, and CYP24A1 genes, which together prevent hyperphosphatemia/ectopic calcification and govern the levels of 1,25D to maintain bone mineral integrity while promoting optimal function of other vital tissues. When occupied by 1,25D, VDR interacts with RXR to form a heterodimer that binds to VDREs in the region of genes directly controlled by 1,25D (e.g., FGF23, klotho, Npt2c, CYP27B1 and CYP24A1). By recruiting complexes of comodulators, activated VDR initiates a series of events that induces or represses the transcription of genes encoding proteins such as: the osteocyte-derived hormone, FGF23; the renal anti-senescence factor and protein co-receptor for FGF23, klotho; other mediators of phosphate transport including Npt2a/c; and vitamin D hormone metabolic enzymes, CYP27B1 and CYP24A1. The mechanism whereby osteocytes are triggered to release FGF23 is yet to be fully defined, but 1,25D, phosphate, and leptin appear to play major roles. The kidney responds to FGF23 to elicit CYP24A1-catalyzed detoxification of the 1,25D hormone while also repressing both Npt2a/c to mediate phosphate elimination and CYP27B1 to limit de novo 1,25D synthesis. Comprehension of these skeletal and renal actions of 1,25D should facilitate the development of novel mimetics to prevent ectopic calcification, chronic renal and vascular disease, and promote healthful aging.


Asunto(s)
Receptores de Calcitriol/metabolismo , Animales , Huesos/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Glucuronidasa/metabolismo , Humanos , Riñón/metabolismo , Proteínas Klotho , Modelos Biológicos , Receptores X Retinoide/metabolismo , Vitamina D/análogos & derivados , Vitamina D/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...