Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 282, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454015

RESUMEN

The increasing rate of carbapenem-resistant bacteria within healthcare environments is an issue of great concern that needs urgent attention. This resistance is driven by metallo-ß-lactamases (MBLs), which can catalyse the hydrolysis of almost all clinically available ß-lactams and are resistant to all the clinically utilized ß-lactamase inhibitors. In this study, an uncharacterized MBL is identified in a multidrug resistant isolate of the opportunistic pathogen, Chryseobacterium indologenes. Sequence analysis predicts this MBL (CIM-1) to be a lipoprotein with an atypical lipobox. Characterization of CIM-1 reveals it to be a high-affinity carbapenemase with a broad spectrum of activity that includes all cephalosporins and carbapenems. Results also shown that CIM-1 is potentially a membrane-associated MBL with an uncharacterized lipobox. Using prediction tools, we also identify more potentially lipidated MBLs with non-canonical lipoboxes highlighting the necessity of further investigation of lipidated MBLs.


Asunto(s)
Antibacterianos , Factores R , Antibacterianos/farmacología , beta-Lactamasas/genética , Proteínas Bacterianas/genética
2.
ACS Infect Dis ; 10(2): 436-452, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38240689

RESUMEN

Haemophilus influenzae is a commensal of the human upper respiratory tract that can infect diverse host niches due, at least in part, to its ability to withstand both endogenous and host-mediated oxidative stresses. Here, we show that hfeA, a gene previously linked to iron import, is essential for H. influenzae manganese recruitment via the HfeBCD transporter. Structural analyses show that metal binding in HfeA uses a unique mechanism that involves substantial rotation of the C-terminal lobe of the protein. Disruption of hfeA reduced H. influenzae manganese acquisition and was associated with decreased growth under aerobic conditions, impaired manganese-superoxide dismutase activity, reduced survival in macrophages, and changes in biofilm production in the presence of superoxide. Collectively, this work shows that HfeA contributes to H. influenzae manganese acquisition and virulence attributes. High conservation of the hfeABCD permease in Haemophilus species suggests that it may serve similar roles in other pathogenic Pasteurellaceae.


Asunto(s)
Haemophilus influenzae , Proteínas de Transporte de Membrana , Humanos , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Proteínas de Transporte de Membrana/genética , Manganeso/metabolismo , Biopelículas , Homeostasis
3.
Front Microbiol ; 13: 967949, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106080

RESUMEN

Acinetobacter baumannii is a pathogen with high intrinsic antimicrobial resistance while multidrug resistant (MDR) and extensively drug resistant (XDR) strains of this pathogen are emerging. Treatment options for infections by these strains are very limited, hence new therapies are urgently needed. The bacterial cell division protein, FtsZ, is a promising drug target for the development of novel antimicrobial agents. We have previously reported limited activity of cinnamaldehyde analogs against Escherichia coli. In this study, we have determined the antimicrobial activity of six cinnamaldehyde analogs for antimicrobial activity against A. baumannii. Microscopic analysis was performed to determine if the compounds inhibit cell division. The on-target effect of the compounds was assessed by analyzing their effect on polymerization and on the GTPase activity of purified FtsZ from A. baumannii. In silico docking was used to assess the binding of cinnamaldehyde analogs. Finally, in vivo and in vitro safety assays were performed. All six compounds displayed antibacterial activity against the critical priority pathogen A. baumannii, with 4-bromophenyl-substituted 4 displaying the most potent antimicrobial activity (MIC 32 µg/mL). Bioactivity was significantly increased in the presence of an efflux pump inhibitor for A. baumannii ATCC 19606 (up to 32-fold) and significantly, for extensively drug resistant UW 5075 (greater than 4-fold), suggesting that efflux contributes to the intrinsic resistance of A. baumannii against these agents. The compounds inhibited cell division in A. baumannii as observed by the elongated phenotype and targeted the FtsZ protein as seen from the inhibition of polymerization and GTPase activity. In silico docking predicted that the compounds bind in the interdomain cleft adjacent to the H7 core helix. Di-chlorinated 6 was devoid of hemolytic activity and cytotoxicity against mammalian cells in vitro, as well as adverse activity in a Caenorhabditis elegans nematode model in vivo. Together, these findings present halogenated analogs 4 and 6 as promising candidates for further development as antimicrobial agents aimed at combating A. baumannii. This is also the first report of FtsZ-targeting compounds with activity against an XDR A. baumannii strain.

4.
Microb Genom ; 7(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34919514

RESUMEN

Carbapenems are potent broad-spectrum ß-lactam antibiotics reserved for the treatment of serious infections caused by multidrug-resistant bacteria such as Pseudomonas aeruginosa. The surge in P. aeruginosa resistant to carbapenems is an urgent threat, as very few treatment options remain. Resistance to carbapenems is predominantly due to the presence of carbapenemase enzymes. The assessment of 147 P. aeruginosa isolates revealed that 32 isolates were carbapenem non-wild-type. These isolates were screened for carbapenem resistance genes using PCR. One isolate from wastewater contained the Adelaide imipenemase gene (blaAIM-1) and was compared phenotypically with a highly carbapenem-resistant clinical isolate containing the blaAIM-1 gene. A further investigation of wastewater samples from various local healthcare and non-healthcare sources as well as river water, using probe-based qPCR, revealed the presence of the blaAIM-1 gene in all the samples analysed. The widespread occurrence of blaAIM-1 throughout Adelaide hinted at the possibility of more generally extensive spread of this gene than originally thought. A blast search revealed the presence of the blaAIM-1 gene in Asia, North America and Europe. To elucidate the identity of the organism(s) carrying the blaAIM-1 gene, shotgun metagenomic sequencing was conducted on three wastewater samples from different locations. Comparison of these nucleotide sequences with a whole-genome sequence of a P. aeruginosa isolate revealed that, unlike the genetic environment and arrangement in P. aeruginosa, the blaAIM-1 gene was not carried as part of any mobile genetic elements. A phylogenetic tree constructed with the deduced amino acid sequences of AIM-1 suggested that the potential origin of the blaAIM-1 gene in P. aeruginosa might be the non-pathogenic environmental organism, Pseudoxanthomonas mexicana.


Asunto(s)
Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana , Pseudomonas aeruginosa/clasificación , Secuenciación Completa del Genoma/métodos , beta-Lactamasas/genética , Secuencia de Aminoácidos , Animales , Asia , Europa (Continente) , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , América del Norte , Filogenia , Filogeografía , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Aguas Residuales/microbiología
5.
Sci Total Environ ; 785: 147270, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940413

RESUMEN

Wastewater-based epidemiology is currently being utilized to monitor the dissemination of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), on a population scale. The detection of SARS-CoV-2 in wastewater is highly influenced by methodologies used for its isolation, concentration and RNA extraction. Although various viral concentration methods are currently employed, including polyethylene glycol (PEG) precipitation, adsorption-extraction, ultracentrifugation and ultrafiltration, to our knowledge, none of these methods have been standardized for use with a variety of wastewater matrices and/or different kits for RNA extraction and quantification. To address this, wastewater with different physical characteristics was seeded with gamma-irradiated SARS-CoV-2 and used to test the efficiency of PEG precipitation and adsorption-extraction to concentrate the virus from three physiochemically different wastewater samples, sourced from three distinct wastewater plants. Efficiency of viral concentration and RNA extraction was assessed by reverse-transcriptase polymerase chain reaction and the recovery yields calculated. As co-purification of inhibitors can be problematic for subsequent detection, two commonly used commercial master mixes were assessed for their sensitivity and efficiency to detect two SARS-CoV-2 target nucleocapsid (N) gene sequences. Recovery rates varied greatly between wastewater matrices and concentration methods, with the highest and most reproducible recovery rates (46.6-56.7%) observed when SARS-CoV-2 was precipitated with PEG and detected by the Luna® Universal master mix. The adsorption-extraction method was less effective (0-21.7%). This study demonstrates that PEG precipitation is the more robust method, which translates well to varying wastewater matrices, producing consistent and reproducible recovery rates. Furthermore, it is compatible with different kits for RNA extraction and quantitation.


Asunto(s)
COVID-19 , Virus , Humanos , SARS-CoV-2 , Aguas Residuales
6.
Antibiotics (Basel) ; 9(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291418

RESUMEN

The bacterial cell division protein, FtsZ, has been identified as a target for antimicrobial development. Derivatives of 3-methoxybenzamide have shown promising activities as FtsZ inhibitors in Gram-positive bacteria. We sought to characterise the activity of five difluorobenzamide derivatives with non-heterocyclic substituents attached through the 3-oxygen. These compounds exhibited antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA), with an isopentyloxy-substituted compound showing modest activity against vancomycin resistant Enterococcus faecium (VRE). The compounds were able to reverse resistance to oxacillin in highly resistant clinical MRSA strains at concentrations far below their MICs. Three of the compounds inhibited an Escherichia coli strain lacking the AcrAB components of a drug efflux pump, which suggests the lack of Gram-negative activity can partly be attributed to efflux. The compounds inhibited cell division by targeting S. aureus FtsZ, producing a dose-dependent increase in GTPase rate which increased the rate of FtsZ polymerization and stabilized the FtsZ polymers. These compounds did not affect the polymerization of mammalian tubulin and did not display haemolytic activity or cytotoxicity. These derivatives are therefore promising compounds for further development as antimicrobial agents or as resistance breakers to re-sensitive MRSA to beta-lactam antibiotics.

7.
mSystems ; 5(3)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398278

RESUMEN

Experimental evolution is a powerful technique to understand how populations evolve from selective pressures imparted by the surrounding environment. With the advancement of whole-population genomic sequencing, it is possible to identify and track multiple contending genotypes associated with adaptations to specific selective pressures. This approach has been used repeatedly with model species in vitro, but only rarely in vivo Herein we report results of replicate experimentally evolved populations of Streptococcus pneumoniae propagated by repeated murine nasal colonization with the aim of identifying gene products under strong selection as well as the population genetic dynamics of infection cycles. Frameshift mutations in one gene, dltB, responsible for incorporation of d-alanine into teichoic acids on the bacterial surface, evolved repeatedly and swept to high frequency. Targeted deletions of dltB produced a fitness advantage during initial nasal colonization coupled with a corresponding fitness disadvantage in the lungs during pulmonary infection. The underlying mechanism behind the fitness trade-off between these two niches was found to be enhanced adherence to respiratory cells balanced by increased sensitivity to host-derived antimicrobial peptides, a finding recapitulated in the murine model. Additional mutations that are predicted to affect trace metal transport, central metabolism, and regulation of biofilm production and competence were also selected. These data indicate that experimental evolution can be applied to murine models of pathogenesis to gain insight into organism-specific tissue tropisms.IMPORTANCE Evolution is a powerful force that can be experimentally harnessed to gain insight into how populations evolve in response to selective pressures. Herein we tested the applicability of experimental evolutionary approaches to gain insight into how the major human pathogen Streptococcus pneumoniae responds to repeated colonization events using a murine model. These studies revealed the population dynamics of repeated colonization events and demonstrated that in vivo experimental evolution resulted in highly reproducible trajectories that reflect the environmental niche encountered during nasal colonization. Mutations impacting the surface charge of the bacteria were repeatedly selected during colonization and provided a fitness benefit in this niche that was counterbalanced by a corresponding fitness defect during lung infection. These data indicate that experimental evolution can be applied to models of pathogenesis to gain insight into organism-specific tissue tropisms.

8.
PLoS Pathog ; 15(8): e1007957, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31437249

RESUMEN

Human zinc deficiency increases susceptibility to bacterial infection. Although zinc supplementation therapies can reduce the impact of disease, the molecular basis for protection remains unclear. Streptococcus pneumoniae is a major cause of bacterial pneumonia, which is prevalent in regions of zinc deficiency. We report that dietary zinc levels dictate the outcome of S. pneumoniae infection in a murine model. Dietary zinc restriction impacts murine tissue zinc levels with distribution post-infection altered, and S. pneumoniae virulence and infection enhanced. Although the activation and infiltration of murine phagocytic cells was not affected by zinc restriction, their efficacy of bacterial control was compromised. S. pneumoniae was shown to be highly sensitive to zinc intoxication, with this process impaired in zinc restricted mice and isolated phagocytic cells. Collectively, these data show how dietary zinc deficiency increases sensitivity to S. pneumoniae infection while revealing a role for zinc as a component of host antimicrobial defences.


Asunto(s)
Suplementos Dietéticos , Modelos Animales de Enfermedad , Enfermedades Pulmonares/inmunología , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/inmunología , Virulencia/efectos de los fármacos , Zinc/administración & dosificación , Animales , Femenino , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/microbiología , Ratones , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo
9.
Int J Mol Sci ; 20(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699983

RESUMEN

Acinetobacter baumannii has emerged as one of the leading causative agents of nosocomial infections. Due to its high level of intrinsic and adapted antibiotic resistance, treatment failure rates are high, which allows this opportunistic pathogen to thrive during infection in immune-compromised patients. A. baumannii can cause infections within a broad range of host niches, with pneumonia and bacteraemia being associated with the greatest levels of morbidity and mortality. Although its resistance to antibiotics is widely studied, our understanding of the mechanisms required for dealing with environmental stresses related to virulence and hospital persistence, such as copper toxicity, is limited. Here, we performed an in silico analysis of the A. baumannii copper resistome, examining its regulation under copper stress. Using comparative analyses of bacterial P-type ATPases, we propose that A. baumannii encodes a member of a novel subgroup of P1B-1 ATPases. Analyses of three putative inner membrane copper efflux systems identified the P1B-1 ATPase CopA as the primary mediator of cytoplasmic copper resistance in A. baumannii. Using a murine model of A. baumannii pneumonia, we reveal that CopA contributes to the virulence of A. baumannii. Collectively, this study advances our understanding of how A. baumannii deals with environmental copper toxicity, and it provides novel insights into how A. baumannii combats adversities encountered as part of the host immune defence.


Asunto(s)
Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidad , ATPasas Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Proteínas de Escherichia coli/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , ATPasas Transportadoras de Cobre/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Proteínas de Escherichia coli/genética , Filogenia , Virulencia
10.
mBio ; 10(1)2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723122

RESUMEN

Free fatty acids hold important immune-modulatory roles during infection. However, the host's long-chain polyunsaturated fatty acids, not commonly found in the membranes of bacterial pathogens, also have significant broad-spectrum antibacterial potential. Of these, the omega-6 fatty acid arachidonic acid (AA) and the omega-3 fatty acid decosahexaenoic acid (DHA) are highly abundant; hence, we investigated their effects on the multidrug-resistant human pathogen Acinetobacter baumannii Our analyses reveal that AA and DHA incorporate into the A. baumannii bacterial membrane and impact bacterial fitness and membrane integrity, with DHA having a more pronounced effect. Through transcriptional profiling and mutant analyses, we show that the A. baumannii ß-oxidation pathway plays a protective role against AA and DHA, by limiting their incorporation into the phospholipids of the bacterial membrane. Furthermore, our study identified a second bacterial membrane protection system mediated by the AdeIJK efflux system, which modulates the lipid content of the membrane via direct efflux of lipids other than AA and DHA, thereby providing a novel function for this major efflux system in A. baumannii This is the first study to examine the antimicrobial effects of host fatty acids on A. baumannii and highlights the potential of AA and DHA to protect against A. baumannii infections.IMPORTANCE A shift in the Western diet since the industrial revolution has resulted in a dramatic increase in the consumption of omega-6 fatty acids, with a concurrent decrease in the consumption of omega-3 fatty acids. This decrease in omega-3 fatty acid consumption has been associated with significant disease burden, including increased susceptibility to infectious diseases. Here we provide evidence that DHA, an omega-3 fatty acid, has superior antimicrobial effects upon the highly drug-resistant pathogen Acinetobacter baumannii, thereby providing insights into one of the potential health benefits of omega-3 fatty acids. The identification and characterization of two novel bacterial membrane protective mechanisms against host fatty acids provide important insights into A. baumannii adaptation during disease. Furthermore, we describe a novel role for the major multidrug efflux system AdeIJK in A. baumannii membrane maintenance and lipid transport. This core function, beyond drug efflux, increases the appeal of AdeIJK as a therapeutic target.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/fisiología , Adaptación Fisiológica , Antibacterianos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Estrés Fisiológico , Transporte Biológico Activo , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Redes y Vías Metabólicas/genética , Oxidación-Reducción
11.
Front Microbiol ; 9: 813, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867785

RESUMEN

Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections.

12.
Physiol Rep ; 5(16)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28867672

RESUMEN

E-cigarettes are perceived as harmless; however, evidence of their safety is lacking. New data suggests E-cigarettes discharge a range of compounds capable of physiological damage to users. We previously established that cigarette smoke caused defective alveolar macrophage phagocytosis. The present study compared the effect E-cigarette of components; E-liquid flavors, nicotine, vegetable glycerine, and propylene glycol on phagocytosis, proinflammatory cytokine secretion, and phagocytic recognition molecule expression using differentiated THP-1 macrophages. Similar to CSE, phagocytosis of NTHi bacteria was significantly decreased by E-liquid flavoring (11.65-15.75%) versus control (27.01%). Nicotine also decreased phagocytosis (15.26%). E-liquid, nicotine, and E-liquid+ nicotine reduced phagocytic recognition molecules; SR-A1 and TLR-2. IL-8 secretion increased with flavor and nicotine, while TNFα, IL-1ß, IL-6, MIP-1α, MIP-1ß, and MCP-1 decreased after exposure to most flavors and nicotine. PG, VG, or PG:VG mix also induced a decrease in MIP-1α and MIP-1ß We conclude that E-cigarettes can cause macrophage phagocytic dysfunction, expression of phagocytic recognition receptors and cytokine secretion pathways. As such, E-cigarettes should be treated with caution by users, especially those who are nonsmokers.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Inflamación/inducido químicamente , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Fagocitosis/efectos de los fármacos , Línea Celular , Citocinas/metabolismo , Aromatizantes , Humanos , Inflamación/metabolismo , Mediadores de Inflamación , Macrófagos/metabolismo , Nicotina/administración & dosificación
13.
J Bacteriol ; 197(1): 120-7, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25313397

RESUMEN

In Gram-positive bacteria, tyrosine kinases are split into two proteins, the cytoplasmic tyrosine kinase and a transmembrane adaptor protein. In Streptococcus pneumoniae, this transmembrane adaptor is CpsC, with the C terminus of CpsC critical for interaction and subsequent tyrosine kinase activity of CpsD. Topology predictions suggest that CpsC has two transmembrane domains, with the N and C termini present in the cytoplasm. In order to investigate CpsC topology, we used a chromosomal hemagglutinin (HA)-tagged Cps2C protein in S. pneumoniae strain D39. Incubation of both protoplasts and membranes with carboxypeptidase B (CP-B) resulted in complete degradation of HA-Cps2C in all cases, indicating that the C terminus of Cps2C was likely extracytoplasmic and hence that the protein's topology was not as predicted. Similar results were seen with membranes from S. pneumoniae strain TIGR4, indicating that Cps4C also showed similar topology. A chromosomally encoded fusion of HA-Cps2C and Cps2D was not degraded by CP-B, suggesting that the fusion fixed the C terminus within the cytoplasm. However, capsule synthesis was unaltered by this fusion. Detection of the CpsC C terminus by flow cytometry indicated that it was extracytoplasmic in approximately 30% of cells. Interestingly, a mutant in the protein tyrosine phosphatase CpsB had a significantly greater proportion of positive cells, although this effect was independent of its phosphatase activity. Our data indicate that CpsC possesses a varied topology, with the C terminus flipping across the cytoplasmic membrane, where it interacts with CpsD in order to regulate tyrosine kinase activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Polisacáridos Bacterianos/biosíntesis , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/genética , Citometría de Flujo , Conformación Proteica , Streptococcus pneumoniae/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
14.
Microbiology (Reading) ; 160(Pt 12): 2745-2754, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25288646

RESUMEN

Tyrosine phosphorylation has long been recognized as a crucial post-translational regulatory mechanism in eukaryotes. However, only in the past decade has recognition been given to the crucial importance of bacterial tyrosine phosphorylation as an important regulatory feature of pathogenesis. This study describes the effect of tyrosine phosphorylation on the activity of a major virulence factor of the pneumococcus, the autolysin LytA, and a possible connection to the Streptococcus pneumoniae capsule synthesis regulatory proteins (CpsB, CpsC and CpsD). We show that in vitro pneumococcal tyrosine kinase, CpsD, and the protein tyrosine phosphatase, CpsB, act to phosphorylate and dephosphorylate LytA. Furthermore, this modulates LytA function in vitro with phosphorylated LytA binding more strongly to the choline analogue DEAE. A phospho-mimetic (Y264E) mutation of the LytA phosphorylation site displayed similar phenotypes as well as an enhanced dimerization capacity. Similarly, tyrosine phosphorylation increased LytA amidase activity, as evidenced by a turbidometric amidase activity assay. Similarly, when the phospho-mimetic mutation was introduced in the chromosomal lytA of S. pneumoniae, autolysis occurred earlier and at an enhanced rate. This study thus describes, to our knowledge, the first functional regulatory effect of tyrosine phosphorylation on a non-capsule-related protein in the pneumococcus, and suggests a link between the regulation of LytA-dependent autolysis of the cell and the biosynthesis of capsular polysaccharide.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriólisis , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Procesamiento Proteico-Postraduccional , Streptococcus pneumoniae/enzimología , Tirosina/metabolismo , Fosforilación , Streptococcus pneumoniae/fisiología , Factores de Virulencia/metabolismo
15.
Biomacromolecules ; 14(10): 3376-9, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-23980997

RESUMEN

A new biologically compatible Zn(II) sensor was fabricated by embedding a Zn(II) sensing spiropyran within the surface of a liposome derived from Escherichia coli lipids (LSP2). Solution-based experiments with increasing Zn(II) concentrations show improved aqueous solubility and sensitivity compared to the isolated spiropyran molecule (SP2). LSP2 is capable of sensing Zn(II) efflux from dying cells with preliminary data indicating that sensing is localized near the surface membrane of HEK 293 cells. Finally, LSP2 is suitable for development into a nanoliter-scale dip-sensor for Zn(II) using microstructured optical fiber as the sensing platform to detect Zn(II) in the range of 100 ρM with minimal photobleaching. Existing spiropyran based sensing molecules can thus be made biologically compatible, with an ability to operate with improved sensitivity using nanoscale liquid sample volumes. This work represents the first instance where photochromic spiropyran molecules and liposomes are combined to create a new and multifunctional sensing entity for Zn(II).


Asunto(s)
Benzopiranos/química , Indoles/química , Nitrocompuestos/química , Fibras Ópticas , Agua/química , Zinc/análisis , Benzopiranos/síntesis química , Supervivencia Celular , Células HEK293 , Humanos , Indoles/síntesis química , Estructura Molecular , Nitrocompuestos/síntesis química , Tamaño de la Partícula , Procesos Fotoquímicos , Solubilidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...