Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hear Res ; 437: 108856, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531847

RESUMEN

The relative contributions of superior temporal vs. inferior frontal and parietal networks to recognition of speech in a background of competing speech remain unclear, although the contributions themselves are well established. Here, we use fMRI with spectrotemporal modulation transfer function (ST-MTF) modeling to examine the speech information represented in temporal vs. frontoparietal networks for two speech recognition tasks with and without a competing talker. Specifically, 31 listeners completed two versions of a three-alternative forced choice competing speech task: "Unison" and "Competing", in which a female (target) and a male (competing) talker uttered identical or different phrases, respectively. Spectrotemporal modulation filtering (i.e., acoustic distortion) was applied to the two-talker mixtures and ST-MTF models were generated to predict brain activation from differences in spectrotemporal-modulation distortion on each trial. Three cortical networks were identified based on differential patterns of ST-MTF predictions and the resultant ST-MTF weights across conditions (Unison, Competing): a bilateral superior temporal (S-T) network, a frontoparietal (F-P) network, and a network distributed across cortical midline regions and the angular gyrus (M-AG). The S-T network and the M-AG network responded primarily to spectrotemporal cues associated with speech intelligibility, regardless of condition, but the S-T network responded to a greater range of temporal modulations suggesting a more acoustically driven response. The F-P network responded to the absence of intelligibility-related cues in both conditions, but also to the absence (presence) of target-talker (competing-talker) vocal pitch in the Competing condition, suggesting a generalized response to signal degradation. Task performance was best predicted by activation in the S-T and F-P networks, but in opposite directions (S-T: more activation = better performance; F-P: vice versa). Moreover, S-T network predictions were entirely ST-MTF mediated while F-P network predictions were ST-MTF mediated only in the Unison condition, suggesting an influence from non-acoustic sources (e.g., informational masking) in the Competing condition. Activation in the M-AG network was weakly positively correlated with performance and this relation was entirely superseded by those in the S-T and F-P networks. Regarding contributions to speech recognition, we conclude: (a) superior temporal regions play a bottom-up, perceptual role that is not qualitatively dependent on the presence of competing speech; (b) frontoparietal regions play a top-down role that is modulated by competing speech and scales with listening effort; and (c) performance ultimately relies on dynamic interactions between these networks, with ancillary contributions from networks not involved in speech processing per se (e.g., the M-AG network).


Asunto(s)
Percepción del Habla , Habla , Masculino , Humanos , Femenino , Percepción del Habla/fisiología , Cognición , Señales (Psicología) , Acústica , Inteligibilidad del Habla , Enmascaramiento Perceptual/fisiología
2.
J Cogn Neurosci ; 34(11): 2189-2214, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007073

RESUMEN

It has long been known that listening to speech activates inferior frontal (pre-)motor regions in addition to a more dorsal premotor site (dPM). Recent work shows that dPM, located adjacent to laryngeal motor cortex, responds to low-level acoustic speech cues including vocal pitch, and the speech envelope, in addition to higher-level cues such as phoneme categories. An emerging hypothesis is that dPM is part of a general auditory-guided laryngeal control circuit that plays a role in producing speech and other voluntary auditory-vocal behaviors. We recently reported a study in which dPM responded to vocal pitch during a degraded speech recognition task, but only when speech was rated as unintelligible; dPM was more robustly modulated by the categorical difference between intelligible and unintelligible speech. Contrary to the general auditory-vocal hypothesis, this suggests intelligible speech is the primary driver of dPM. However, the same pattern of results was observed in pitch-sensitive auditory cortex. Crucially, vocal pitch was not relevant to the intelligibility judgment task, which may have facilitated processing of phonetic information at the expense of vocal pitch cues. The present fMRI study (n = 25) tests the hypothesis that, for a multitalker task that emphasizes pitch for talker segregation, left dPM and pitch-sensitive auditory regions will respond to vocal pitch regardless of overall speech intelligibility. This would suggest that pitch processing is indeed a primary concern of this circuit, apparent during perception only when the task demands it. Spectrotemporal modulation distortion was used to independently modulate vocal pitch and phonetic content in two-talker (male/female) utterances across two conditions (Competing, Unison), only one of which required pitch-based segregation (Competing). A Bayesian hierarchical drift-diffusion model was used to predict speech recognition performance from patterns of spectrotemporal distortion imposed on each trial. The model's drift rate parameter, a d'-like measure of performance, was strongly associated with vocal pitch for Competing but not Unison. Using a second Bayesian hierarchical model, we identified regions where behaviorally relevant acoustic features were related to fMRI activation in dPM. We regressed the hierarchical drift-diffusion model's posterior predictions of trial-wise drift rate, reflecting the relative presence or absence of behaviorally relevant acoustic features from trial to trial, against trial-wise activation amplitude. A significant positive association with overall drift rate, reflecting vocal pitch and phonetic cues related to overall intelligibility, was observed in left dPM and bilateral auditory cortex in both conditions. A significant positive association with "pitch-restricted" drift rate, reflecting only the relative presence or absence of behaviorally relevant pitch cues, regardless of the presence or absence of phonetic content (intelligibility), was observed in left dPM, but only in the Competing condition. Interestingly, the same effect was observed in bilateral auditory cortex but in both conditions. A post hoc mediation analysis ruled out the possibility that decision load was responsible for the observed pitch effects. These findings suggest that processing of vocal pitch is a primary concern of the auditory-cortex-dPM circuit, although during perception core pitch, processing is carried out by auditory cortex with a potential modulatory influence from dPM.


Asunto(s)
Corteza Auditiva , Corteza Motora , Percepción del Habla , Estimulación Acústica/métodos , Corteza Auditiva/diagnóstico por imagen , Corteza Auditiva/fisiología , Teorema de Bayes , Femenino , Humanos , Masculino , Percepción de la Altura Tonal/fisiología , Habla/fisiología , Percepción del Habla/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...