Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Entomol ; 47(4): 875-880, 2018 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-29800282

RESUMEN

We know numerous abiotic factors strongly influence crop plants. Yet we often know much less about abiotic effects on closely interacting organisms including herbivorous insects. This lack of a whole-system perspective may lead to underestimating the threats from changing factors. High soil salinity is a specific example that we know threatens crop plants in many places, but we need to know much more about how other organisms are also affected. We investigated how salinity affects the soybean aphid (SBA; Aphis glycines Matsumura; Hemiptera: Aphididae) on soybean plants (Glycine max [L.] Merr.; Fabales: Fabaceae) grown across a range of saline conditions. We performed four complementary greenhouse experiments to understand different aspects of how salinity might affect SBA. We found that as salinity increased both population size and fecundity of SBA increased across electrical conductivity values ranging from 0.84 to 8.07 dS m-1. Tracking individual aphids we also found they lived longer and produced more offspring in high saline conditions compared to the control. Moreover, we found that salinity influenced aphid distribution such that when given the chance aphids accumulated more on high-salinity plants. These results suggest that SBA could become a larger problem in areas with higher salinity and that those aphids may exacerbate the negative effects of salinity for soybean production.


Asunto(s)
Áfidos/fisiología , Glycine max/química , Herbivoria , Oviposición , Salinidad , Animales , Áfidos/crecimiento & desarrollo , Femenino , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Densidad de Población , Glycine max/crecimiento & desarrollo
2.
J Environ Manage ; 206: 826-835, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29197808

RESUMEN

Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Restauración y Remediación Ambiental , Humanos , Concentración de Iones de Hidrógeno , Suelo
3.
J Environ Qual ; 46(4): 897-905, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28783790

RESUMEN

Successful remediation of oil-contaminated agricultural land may include the goal of returning the land to prespill levels of agricultural productivity. This productivity may be measured by crop yield, quality, and safety, all of which are influenced by soil characteristics. This research was conducted to determine if these metrics are affected in hard red spring wheat ( L. cultivar Barlow) when grown in soils treated by ex situ thermal desorption (TD) compared with wheat grown in native topsoil (TS). Additionally, TD soils were mixed with TS at various ratios to assess the effectiveness of soil mixing as a procedure for enhancing productivity. In two greenhouse studies, TD soils alone produced similar amounts of grain and biomass as TS, although grain protein in TD soils was 22% (±7%) lower. After mixing TS into TD soils, the mean biomass and grain yield were reduced by up to 60%, but grain protein increased. These trends are likely the result of nutrient availability determined by soil organic matter and nutrient cycling performed by soil microorganisms. Thermal desorption soil had 84% (±2%) lower soil organic carbon than TS, and cumulative respiration was greatly reduced (66 ± 2%). From a food safety perspective, grain from TD soils did not show increased uptake of polycyclic aromatic hydrocarbons. Overall, this research suggests that TD soils are capable of producing safe, high-quality grain yields.


Asunto(s)
Agricultura , Triticum/crecimiento & desarrollo , Carbono , Suelo , Contaminantes del Suelo/química
4.
Environ Entomol ; 46(4): 839-846, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575300

RESUMEN

Many environmental factors, including soil characteristics, are critical for plants, herbivorous arthropods, and their interactions. Despite increasing evidence that soil salinity drastically impacts plants, little is known about how salinity affects the herbivorous arthropod pests feeding on those plants. We investigated how soil salinity affects the twospotted spider mite (Tetranychus urticae Koch) feeding on corn (Zea mays L.) and soybean (Glycine max L.). We performed two greenhouse studies, one focusing on the impact of salinity on individual mite fecundity over a period of 3 d and the other focusing on population growth of T. urticae over 7 d. Both experiments were performed across varying salinity levels; electrical conductivity values ranged from 0.84 to 8.07 dS m-1. We also performed the 3-d fecundity experiment in the field, across naturally varying saline conditions. Overall, the twospotted spider mite performed better as salinity increased; both fecundity and population growth tended to have a positive linear correlation with salinity. These studies suggest that salinity can be important for herbivores, just as it is for plants. Moreover, the negative effects of soil salinity on crop plants in agroecosystems may be further compounded by a greater risk of pest problems. Salinity may be another important environmental stressor that can directly influence crop production while also indirectly influencing herbivorous pests.


Asunto(s)
Sulfato de Magnesio/farmacología , Salinidad , Suelo/química , Sulfatos/farmacología , Tetranychidae/efectos de los fármacos , Tetranychidae/fisiología , Animales , Femenino , Herbivoria/efectos de los fármacos , Sulfato de Magnesio/metabolismo , Dinámica Poblacional , Glycine max/crecimiento & desarrollo , Sulfatos/metabolismo , Zea mays/crecimiento & desarrollo
5.
Environ Manage ; 59(3): 431-439, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27838768

RESUMEN

Rangelands are described as heterogeneous, due to patterning in species assemblages and productivity that arise from species dispersal and interactions with environmental gradients and disturbances across multiple scales. The objectives of rangeland reclamation are typically vegetation establishment, plant community productivity, and soil stability. However, while fine-scale diversity is often promoted through species-rich seed mixes, landscape heterogeneity and coarse-scale diversity are largely overlooked. Our objectives were to evaluate fine and coarse-scale vegetation patterns across a 40-year reclamation chronosequence on reclaimed surface coalmine lands. We hypothesized that both α-diversity and ß-diversity would increase and community patch size and species dissimilarity to reference sites would decrease on independent sites over 40 years. Plant communities were surveyed on 19 post-coalmine reclaimed sites and four intact native reference sites in central North Dakota mixed-grass prairie. Our results showed no differences in α or ß-diversity and plant community patch size over the 40-year chronosequence. However, both α-diversity and ß-diversity on reclaimed sites was similar to reference sites. Native species establishment was limited due to the presence of non-native species such as Kentucky bluegrass (Poa pratensis) on both the reclaimed and reference sites. Species composition was different between reclaimed and reference sites and community dissimilarity increased on reclaimed sites over the 40-year chronosequence. Plant communities resulting from reclamation followed non-equilibrium succession, even with consistent seeds mixes established across all reclaimed years. This suggests post-reclamation management strategies influence species composition outcomes and land management strategies applied uniformly may not increase landscape-level diversity.


Asunto(s)
Minas de Carbón , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Pradera , Poaceae/crecimiento & desarrollo , Suelo/química , Biodiversidad , North Dakota , Factores de Tiempo
6.
J Environ Qual ; 45(4): 1430-6, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27380094

RESUMEN

Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils.


Asunto(s)
Agricultura , Contaminantes del Suelo/química , Suelo , Temperatura
7.
Sci Total Environ ; 494-495: 329-36, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25064620

RESUMEN

Urban land use change is associated with decreased soil-mediated ecosystem services, including stormwater runoff mitigation and carbon (C) sequestration. To better understand soil structure formation over time and the effects of land use change on surface and subsurface hydrology, we quantified the effects of urban land development and subsequent soil rehabilitation on soil aggregate size distribution and aggregate-associated C and their links to soil hydraulic conductivity. Four treatments [typical practice (A horizon removed, subsoil compacted, A horizon partially replaced), enhanced topsoil (same as typical practice plus tillage), post-development rehabilitated soils (compost incorporation to 60-cm depth in subsoil; A horizon partially replaced plus tillage), and pre-development (undisturbed) soils] were applied to 24 plots in Virginia, USA. All plots were planted with five tree species. After five years, undisturbed surface soils had 26 to 48% higher levels of macroaggregation and 12 to 62% greater macroaggregate-associated C pools than those disturbed by urban land development regardless of whether they were stockpiled and replaced, or tilled. Little difference in aggregate size distribution was observed among treatments in subsurface soils, although rehabilitated soils had the greatest macroaggregate-associated C concentrations and pool sizes. Rehabilitated soils had 48 to 171% greater macroaggregate-associated C pool than the other three treatments. Surface hydraulic conductivity was not affected by soil treatment (ranging from 0.4 to 2.3 cm h(-1)). In deeper regions, post-development rehabilitated soils had about twice the saturated hydraulic conductivity (14.8 and 6.3 cm h(-1) at 10-25 cm and 25-40 cm, respectively) of undisturbed soils and approximately 6-11 times that of soils subjected to typical land development practices. Despite limited effects on soil aggregation, rehabilitation that includes deep compost incorporation and breaking of compacted subsurface layers has strong potential as a tool for urban stormwater mitigation and soil management should be explicitly considered in urban stormwater policy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...