Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 19(10): 1228-36, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27531385

RESUMEN

Mass-flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi-natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape-scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator-dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator-supporting practices in agricultural landscapes.


Asunto(s)
Abejas/fisiología , Productos Agrícolas/fisiología , Dípteros/fisiología , Flores/fisiología , Polinización/fisiología , Animales , Europa (Continente) , Densidad de Población
2.
Nature ; 528(7583): 548-50, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26580009

RESUMEN

Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour, homing ability and reproductive success. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.


Asunto(s)
Abejas/efectos de los fármacos , Abejas/fisiología , Productos Agrícolas/fisiología , Insecticidas/efectos adversos , Polinización/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Frutas/fisiología , Procesos de Grupo , Malus/fisiología , Polen/fisiología , Semillas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...