Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 265(Pt A): 114750, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32454379

RESUMEN

Fluridone is widely used in ambient water bodies to control the spread of invasive aquatic plants. While the ability of fluridone to control aquatic weeds such as water hyacinth is well reported, an improved understanding of fluridone persistence in water and sediment is still needed to determine potential residues of fluridone in the water column and bed sediment of ambient water bodies. In this study, experiments were conducted over a three-month period to examine the degradation of fluridone in saturated sediment and water under various levels of UV-light (0-1000 µW/cm2), and temperature (4-40 °C). Results showed a large decrease in the half-life of fluridone in water with increasing UV light intensity, but in saturated sediment the impact of UV light exposure on fluridone degradation was minimal. At low temperature (4 °C), the degradation of fluridone in both water and sediment was minimal. At elevated temperature (20-40 °C), fluridone degradation was increased in water and sediment. Additionally, the persistence of fluridone in sediment was reduced by increasing sand content in the sediment matrix. Possible fluridone transport through the subsurface was estimated over a range of initial concentrations, groundwater velocities, fluridone half-lives, and fluridone sorption coefficients which may be seen in a field environment. A form of the Ogata-Banks equation which accounts for 1st order decay was used for describing the dispersion of fluridone, while a related equation from Bear, 1979 was utilized to quantify advection. In all tested scenarios, maximum transport was less than 10 m over one month of observation. Results of this study will improve our existing understanding of fluridone persistence and in water and sediment.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Piridonas , Temperatura , Rayos Ultravioleta , Agua/análisis
2.
AMB Express ; 9(1): 90, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227931

RESUMEN

Fluridone is widely used as a herbicide for controlling invasive aquatic plants such as hydrilla in surface water bodies. When applied on surface waters fluridone can attach to bed sediment, requiring rigorous extraction methods prior to analysis. Currently, very limited information exists in terms of fluridone residue detection in delta sediment. In this study, we researched fluridone detection in both water and sediment. To extract fluridone from sediment, here we have tested two extraction methods: (1) a rotavapor method (RM); and (2) a quick, easy, cheap, effective, rugged and safe (QuEChERS) method (QM). The extraction results of RM were compared with those of QM. To quantify fluridone concentrations in extracts, a high-performance liquid chromatography (HPLC)-UV detector was used. HPLC separation was achieved using an Allure C18 5 µm 150 × 4.6 mm column with a mobile phase composed of acetonitrile and water (60:40, v/v). The UV detector was operated at 237 nm. The method was tested and validated using a series of water and sediment samples taken from Sacramento-San Joaquin Delta in California. The average recovery of fluridone was 73% and 78% using RM and QM respectively. The proposed method can be used for testing fluridone in water and sediment samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...