Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Neuroscience ; 194: 11-8, 2011 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-21821104

RESUMEN

Two-pore domain K(+) (K(2P)) channels underlie leak or background potassium conductances in many cells. The Trek subfamily of K(2P) channels, which includes Trek1/Kcnk2 and Trek2/Kcnk10 and has been implicated in depression, nociception, and cognition, exhibits complex regulation and can modulate cell excitability in response to a wide array of stimuli. While alternative translation initiation and alternative splicing contribute to the structural and functional diversity of Trek1, the impact of post-transcriptional modifications on the expression and function of Trek2 is unclear. Here, we characterized two novel splice isoforms of the mouse Trek2 gene. One variant is a truncated form of Trek2 that possesses two transmembrane segments and one pore domain (Trek2-1p), while the other (Trek2b) differs from two known mouse Trek2 isoforms (Trek2a and Trek2c) at the extreme amino terminus. Both Trek2-1p and Trek2b, and Trek2a and Trek2c, showed prominent expression in the mouse CNS. Expression patterns of the Trek2 variants within the CNS were largely overlapping, though some isoform-specific differences were noted. Heterologous expression of Trek2-1p yielded no novel whole-cell currents in transfected human embryonic kidney (HEK) 293 cells. In contrast, expression of Trek2b correlated with robust K(+) currents that were ~fivefold larger than currents measured in cells expressing Trek2a or Trek2c, a difference mirrored by significantly higher levels of Trek2b found at the plasma membrane. This study provides new insights into the molecular diversity of Trek channels and suggests a potential role for the Trek2 amino terminus in channel trafficking and/or stability.


Asunto(s)
Empalme Alternativo/genética , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Variación Genética , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Canales de Potasio de Dominio Poro en Tándem/fisiología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/genética , Estabilidad Proteica , Estructura Terciaria de Proteína/genética , Transporte de Proteínas/genética
2.
Genes Brain Behav ; 7(5): 523-31, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18194467

RESUMEN

G protein-gated inwardly rectifying K(+) (GIRK/Kir3) channels mediate the postsynaptic inhibitory effects of many neurotransmitters and drugs of abuse. The lack of drugs selective for GIRK channels has hindered our ability to study their contributions to behavior. Here, we assessed the impact of GIRK subunit ablation on several behavioral endpoints. Mice were evaluated with respect to open-field motor activity and habituation, anxiety-related behavior, motor co-ordination and ataxia and operant performance. GIRK3 knockout ((-/-)) mice behaved indistinguishably from wild-type mice in this panel of tests. GIRK1(-/-) mice and GIRK2(-/-) mice, however, showed elevated motor activity and delayed habituation to an open field. GIRK2(-/-) mice, and to a lesser extent GIRK1(-/-) mice, also displayed reduced anxiety-related behavior in the elevated plus maze. Both GIRK1(-/-) mice and GIRK2(-/-) mice displayed marked resistance to the ataxic effects of the GABA(B) receptor agonist baclofen in the rotarod test. All GIRK(-/-) mice were able to learn an operant task using food as the reinforcing agent. Within-session progressive ratio scheduling, however, showed elevated lever press behavior in GIRK2(-/-) mice and, to a lesser extent, in GIRK1(-/-) mice. Phenotypic differences between mice lacking GIRK1, GIRK2 and GIRK3 correlate well with the known impact of GIRK subunit ablation on neurotransmitter-gated GIRK currents, arguing that most neuronal GIRK channels contain GIRK1 and/or GIRK2. Altogether, our data suggest that GIRK channels make important contribution to a range of behaviors and may represent points of therapeutic intervention in disorders of anxiety, spasticity and reward.


Asunto(s)
Conducta Animal/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Aprendizaje por Laberinto/fisiología , Actividad Motora/genética , Animales , Ansiedad/genética , Ataxia/genética , Condicionamiento Psicológico/fisiología , Conducta Exploratoria/fisiología , Conducta Alimentaria/fisiología , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
J Am Coll Cardiol ; 37(8): 2136-43, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11419900

RESUMEN

OBJECTIVES: We sought to study the role of I(KACh) in atrial fibrillation (AF) and the potential electrophysiologic effects of a specific I(KACh) antagonist. BACKGROUND: I(KACh) mediates much of the cardiac responses to vagal stimulation. Vagal stimulation predisposes to AF, but the specific role of I(KACh) in the generation of AF and the electrophysiologic effects of specific I(KACh) blockade have not been studied. METHODS: Adult wild-type (WT) and I(KACh)-deficient knockout (KO) mice were studied in the absence and presence of the muscarinic receptor agonist carbachol. The electrophysiologic features of KO mice were compared with those of WT mice to assess the potential effects of a specific I(KACh) antagonist. RESULTS: Atrial fibrillation lasting for a mean of 5.7+/-11 min was initiated in 10 of 14 WT mice in the presence of carbachol, but not in the absence of carbachol. Atrial arrhythmia could not be induced in KO mice. Ventricular tachyarrhythmia could not be induced in either type of mouse. Sinus node recovery times after carbachol and sinus cycle lengths were shorter and ventricular effective refractory periods were greater in KO mice than in WT mice. There was no significant difference between KO and WT mice in AV node function. CONCLUSIONS: Activation of I(KACh) predisposed to AF and lack of I(KACh) prevented AF. It is likely that I(KACh) plays a crucial role in the generation of AF in mice. Specific I(KACh) blockers might be useful for the treatment of AF without significant adverse effects on the atrioventricular node or the ventricles.


Asunto(s)
Fibrilación Atrial/fisiopatología , Activación del Canal Iónico/fisiología , Canales de Potasio de Rectificación Interna , Canales de Potasio/fisiología , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Modelos Animales de Enfermedad , Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Ratones , Ratones Noqueados
4.
J Biol Chem ; 275(46): 36211-6, 2000 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-10956667

RESUMEN

G-protein-gated inwardly rectifying K(+) (GIRK) channels are widely expressed in the brain and are activated by at least eight different neurotransmitters. As K(+) channels, they drive the transmembrane potential toward E(K) when open and thus dampen neuronal excitability. There are four mammalian GIRK subunits (GIRK1-4 or Kir 3.1-4), with GIRK1 being the most unique of the four by possessing a long carboxyl-terminal tail. Early studies suggested that GIRK1 was an integral component of native GIRK channels. However, more recent data indicate that native channels can be either homo- or heterotetrameric complexes composed of several GIRK subunit combinations. The functional implications of subunit composition are poorly understood at present. The purpose of this study was to examine the functional and biochemical properties of GIRK channels formed by the co-assembly of GIRK2 and GIRK3, the most abundant GIRK subunits found in the mammalian brain. To examine the properties of a channel composed of these two subunits, we co-transfected GIRK2 and GIRK3 in CHO-K1 cells and assayed the cells for channel activity by patch clamp. The most significant difference between the putative GIRK2/GIRK3 heteromultimeric channel and GIRK1/GIRKx channels at the single channel level was an approximately 5-fold lower sensitivity to activation by Gbetagamma. Complexes containing only GIRK2 and GIRK3 could be immunoprecipitated from transfected cells and could be purified from native brain tissue. These data indicate that functional GIRK channels composed of GIRK2 and GIRK3 subunits exist in brain.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/química , Canales de Potasio/metabolismo , Animales , Encéfalo/metabolismo , Células CHO , Cricetinae , Relación Dosis-Respuesta a Droga , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Activación del Canal Iónico , Sustancias Macromoleculares , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Canales de Potasio/genética , Pruebas de Precipitina , Unión Proteica , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Transfección
5.
J Neurosci ; 20(15): 5608-15, 2000 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-10908597

RESUMEN

Neuronal G-protein-gated potassium (K(G)) channels are activated by several neurotransmitters and constitute an important mode of synaptic inhibition in the mammalian nervous system. K(G) channels are composed of combinations of four subunits termed G protein-gated inwardly rectifying K(+) channels (GIRK). All four GIRK subunits are expressed in the brain, and there is a general consensus concerning the expression patterns of GIRK1, GIRK2, and GIRK3. The localization pattern of GIRK4, however, remains controversial. In this study, we exploit the negative background of mice lacking a functional GIRK4 gene to identify neuronal populations that contain GIRK4 mRNA. GIRK4 mRNA was detected in only a few regions of the mouse brain, including the deep cortical pyramidal neurons, the endopiriform nucleus and claustrum of the insular cortex, the globus pallidus, the ventromedial hypothalamic nucleus, parafascicular and paraventricular thalamic nuclei, and a few brainstem nuclei (e.g., the inferior olive and vestibular nuclei). Mice lacking GIRK4 were viable and appeared normal and did not display gross deficiencies in locomotor activity, visual tasks, and pain perception. Furthermore, GIRK4-deficient mice performed similarly to wild-type controls in the passive avoidance paradigm, a test of aversive learning. GIRK4 knock-out mice did, however, exhibit impaired performance in the Morris water maze, a test of spatial learning and memory.


Asunto(s)
Conducta Animal/fisiología , Química Encefálica/fisiología , Aprendizaje por Laberinto/fisiología , Canales de Potasio de Rectificación Interna , Canales de Potasio/análisis , Canales de Potasio/genética , Animales , Reacción de Prevención/fisiología , Embrión de Pollo , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Expresión Génica/fisiología , Hibridación in Situ , Activación del Canal Iónico/fisiología , Locomoción/fisiología , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/análisis
6.
J Biol Chem ; 275(17): 12363-6, 2000 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-10777517

RESUMEN

pICln is a 26-kDa protein that is ubiquitously expressed and highly conserved from Xenopus laevis to Homo sapiens. The physiological functions of pICln remain to be established. To address this question, we disrupted the ICln gene in embryonic stem cells. We found that murine embryos lacking ICln die early in gestation (between stages E3.5 and E7.5). Furthermore, we found that ICln is essential for embryonic stem cell viability. Previously, we showed that pICln interacts directly with a homolog of a yeast protein that binds a PAK-like kinase and participates in the regulation of cell morphology and cell cycling. pICln also forms a complex with several core spliceosomal proteins, and this interaction may play a role in the regulation of spliceosomal biogenesis. Collectively, these data strongly suggest that pICln participates in critical cellular pathways, including regulation of the cell cycle and RNA processing.


Asunto(s)
Supervivencia Celular , Canales de Cloruro/fisiología , Embrión de Mamíferos/fisiología , Canales Iónicos , Células 3T3 , Animales , Línea Celular , Canales de Cloruro/genética , Marcación de Gen , Genotipo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Recombinación Genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/fisiología , Factores de Tiempo
7.
Ann N Y Acad Sci ; 868: 386-98, 1999 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-10414308

RESUMEN

The muscarinic-gated atrial potassium channel IKACh has been well characterized functionally, and has been an excellent model system for studying G protein/effector interactions. Complementary DNAs encoding the composite subunits of IKACh have been identified, allowing direct probing of structural and functional features of the channel. Here, we highlight recent approaches taken in our laboratory to determine the oligomeric structure of native cardiac IKACh, the mechanism of activation of IKACh by G proteins, and the relevance of IKACh to cardiac physiology.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Atrios Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Animales , Bovinos , Reactivos de Enlaces Cruzados/química , Electrocardiografía , Electrofisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Frecuencia Cardíaca , Ratones , Datos de Secuencia Molecular , Fragmentos de Péptidos/farmacología , Canales de Potasio/química , Conformación Proteica , Nervio Vago/fisiología
8.
Biophys J ; 76(1 Pt 1): 246-52, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9876138

RESUMEN

IKACh is an inwardly rectifying potassium channel that plays an important role in the regulation of mammalian heart rate. IKACh is activated by direct interaction with Gbetagamma subunits of pertussis toxin-sensitive heterotrimeric G-proteins. The stoichiometry of the Gbetagamma/channel complex is currently unknown, and kinetic analysis of the channel behavior has led to conflicting conclusions. Here, we analyze the kinetics of the native IKACh channel in inside-out cardiomyocyte patches activated directly by Gbetagamma. We conclude that the channel has at least two open states and that binding of Gbetagamma prolongs its mean open time duration. These findings imply the existence of at least two binding sites on the channel complex for Gbetagamma. We also show that the duration of the channel opening is negatively correlated with the duration of subsequent channel closing, which further constrains the possible kinetic models. A simple qualitative model describing the kinetic behavior of IKACh is presented.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Canales de Potasio/metabolismo , Receptores Muscarínicos/metabolismo , Animales , Fenómenos Biofísicos , Biofisica , Células Cultivadas , Atrios Cardíacos/metabolismo , Cinética , Modelos Biológicos , Técnicas de Placa-Clamp , Unión Proteica , Ratas
9.
J Biol Chem ; 274(4): 2571-82, 1999 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-9891030

RESUMEN

GIRK1 and GIRK4 subunits combine to form the heterotetrameric acetylcholine-activated potassium current (IKACh) channel in pacemaker cells of the heart. The channel is activated by direct binding of G-protein Gbetagamma subunits. The GIRK1 subunit is atypical in the GIRK family in having a unique ( approximately 125-amino acid) domain in its distal C terminus. GIRK1 cannot form functional channels by itself but must combine with another GIRK family member (GIRK2, GIRK3, or GIRK4), which are themselves capable of forming functional homotetramers. Here we show, using an extracellularly Flag-tagged GIRK1 subunit, that GIRK1 requires association with GIRK4 for cell surface localization. Furthermore, GIRK1 homomultimers reside in core-glycosylated and nonglycosylated states. Coexpression of GIRK4 caused the appearance of the mature glycosylated form of GIRK1. [35S]Methionine pulse-labeling experiments demonstrated that GIRK4 associates with GIRK1 either during or shortly after subunit synthesis. Mutant and chimeric channel subunits were utilized to identify domains responsible for GIRK1 localization. Truncation of the unique C-terminal domain of Delta374-501 resulted in an intracellular GIRK1 subunit that produced normal IKACh-like channels when coexpressed with GIRK4. Chimeras containing the C-terminal domain of GIRK1 from amino acid 194 to 501 were intracellularly localized, whereas chimeras containing the C terminus of GIRK4 localized to the cell surface. Deletion analysis of the GIRK4 C terminus identified a 25-amino acid region required for cell surface targeting of GIRK1/GIRK4 heterotetramers and a 25-amino acid region required for cell surface localization of GIRK4 homotetramers. GIRK1 appeared intracellular in atrial myocytes isolated from GIRK4 knockout mice and was not maturely glycosylated, supporting an essential role for GIRK4 in the processing and cell surface localization of IKACh in vivo.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Activación del Canal Iónico , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Células COS , Membrana Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Glicosilación , Atrios Cardíacos/metabolismo , Ratones , Ratones Noqueados , Canales de Potasio/genética , Canales de Potasio/fisiología , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Physiol Rev ; 78(4): 1131-63, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9790572

RESUMEN

Reverse genetics, in which detailed knowledge of a gene of interest permits in vivo modification of its expression or function, provides a powerful method for examining the physiological relevance of any protein. Transgenic and knockout mouse models are particularly useful for studies of complex neurobiological problems. The primary aims of this review are to familiarize the nonspecialist with the techniques and limitations of mouse mutagenesis, to describe new technologies that may overcome these limitations, and to illustrate, using representative examples from the literature, some of the ways in which genetically altered mice have been used to analyze central nervous system function. The goal is to provide the information necessary to evaluate critically studies in which mutant mice have been used to study neurobiological problems.


Asunto(s)
Conducta Animal/fisiología , Ratones Noqueados , Ratones Transgénicos , Fenómenos Fisiológicos del Sistema Nervioso , Animales , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Trastornos Mentales/genética , Trastornos Mentales/fisiopatología , Ratones , Ratones Noqueados/genética , Ratones Noqueados/fisiología , Ratones Transgénicos/genética , Ratones Transgénicos/fisiología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Transgenes
11.
J Biol Chem ; 273(18): 10811-4, 1998 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-9556550

RESUMEN

Since its cloning and tentative identification as a chloride channel, the function of the pICln protein has been debated. Although there is no consensus regarding the specific function of pICln, it was suggested to play a role, directly or indirectly, in the function of a swelling-induced chloride conductance. Previously, the protein was shown to exist in several discrete protein complexes. To determine the function of the protein, we have begun the systematic identification of all proteins to which it binds. Here we show that four proteins firmly bind to pICln and identify the 72-kDa pICln-binding protein by affinity purification and peptide microsequencing. The interaction between this protein and pICln was verified several ways, including the extraction of several pICln clones from a cDNA library using the 72-kDa protein as a bait in a yeast two-hybrid screen. The protein is homologous to the yeast Skb1 protein. Skb1 interacts with Shk1, a homolog of the p21(Cdc42/Rac)-activated protein kinases (PAKs). The known involvement of PAKs in cytoskeletal rearrangement suggests that pICln may be linked to a system regulating cell morphology.


Asunto(s)
Proteínas Portadoras/metabolismo , Canales de Cloruro/metabolismo , Proteínas Fúngicas/metabolismo , Proteína Metiltransferasas , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Línea Celular , Clonación Molecular , Perros , Proteínas Fúngicas/química , Humanos , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Unión Proteica , Proteína-Arginina N-Metiltransferasas , Ratas , Homología de Secuencia de Aminoácido
12.
Neuron ; 20(1): 103-14, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9459446

RESUMEN

Acetylcholine (ACh) released from the stimulated vagus nerve decreases heart rate via modulation of several types of ion channels expressed in cardiac pacemaker cells. Although the muscarinic-gated potassium channel I(KACh) has been implicated in vagally mediated heart rate regulation, questions concerning the extent of its contribution have remained unanswered. To assess the role of I(KACh) in heart rate regulation in vivo, we generated a mouse line deficient in I(KACh) by targeted disruption of the gene coding for GIRK4, one of the channel subunits. We analyzed heart rate and heart rate variability at rest and after pharmacological manipulation in unrestrained conscious mice using electrocardiogram (ECG) telemetry. We found that I(KACh) mediated approximately half of the negative chronotropic effects of vagal stimulation and adenosine on heart rate. In addition, this study indicates that I(KACh) is necessary for the fast fluctuations in heart rate responsible for beat-to-beat control of heart activity, both at rest and after vagal stimulation. Interestingly, noncholinergic systems also appear to modulate heart activity through I(KACh). Thus, I(KACh) is critical for effective heart rate regulation in mice.


Asunto(s)
Frecuencia Cardíaca/fisiología , Ratones Noqueados/genética , Ratones Noqueados/fisiología , Canales de Potasio de Rectificación Interna , Canales de Potasio/genética , Adenosina/farmacología , Animales , Electrocardiografía , Electrofisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Frecuencia Cardíaca/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Ratones Endogámicos C57BL/genética , Muscarina/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio/fisiología , Estimulación Química , Telemetría , Nervio Vago/fisiología
13.
Genomics ; 40(3): 395-401, 1997 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-9073506

RESUMEN

The G protein-gated potassium channel IKACh constitutes part of a signaling pathway that mediates the negative chronotropic and inotropic effects of acetylcholine on cardiac physiology. Similar or identical ion channels regulate the excitability of many neurons in response to neurotransmitters. IKACh is composed of two homologous subunits, GIRK1 and GIRK4. Here we describe a partial genomic structure of the mouse Girk4 gene. Two exons containing the complete protein-coding sequence were identified. Girk4 was mapped to mouse chromosome 9 (13 cM), consistent with the mapping of human GIRK4 to chromosome 11q23-ter. GIRK4 mRNA was found mainly in mouse heart, with trace levels detected in brain, kidney, lung, and spleen. No detectable levels were observed in skeletal muscle, liver, and testis. The onset of GIRK4 mRNA expression in the developing mouse occurs between Embryonic Days 7 and 11, consistent with the appearance and function of the mouse heart.


Asunto(s)
Canales de Potasio de Rectificación Interna , Canales de Potasio/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Clonación Molecular , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Ratas , Alineación de Secuencia
14.
Genomics ; 40(3): 402-8, 1997 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-9073507

RESUMEN

The molecular identities of most volume-regulated ion channel proteins and putative regulatory elements are currently unknown. Recently, a role for a nucleotide-sensitive chloride conductance regulator, ICln, in the function of a ubiquitous volume-regulated chloride channel has been suggested. Here, we report the cloning of a fragment of the mouse Icln gene and identification of probable Icln pseudogenes. The functional Icln gene was mapped independently to human chromosome 11q13.5-q14 and mouse chromosome 7 (50.3 cM). ICln mRNA was shown to be abundantly expressed and evenly distributed in all mouse tissues examined and at four stages of embryonic development, consistent with the proposed role of ICln in the regulation of a ubiquitous chloride channel.


Asunto(s)
Canales de Cloruro/genética , Regulación de la Expresión Génica , Proteínas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Canales de Cloruro/química , Mapeo Cromosómico , Secuencia Conservada , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas/química , Alineación de Secuencia
15.
J Biol Chem ; 270(48): 28777-9, 1995 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-7499400

RESUMEN

Cardiac IKACh is comprised of two inwardly rectifying K+ channel subunits, CIR and GIRK1 (Krapivinsky, G., Gordon, E. G., Wickman, K., Velimirovic, B., Krapivinsky, L., and Clapham, D. E. (1995) Nature 374, 135-141). A cardiac protein virtually identical to CIR, termed rcKATP-1 (Ashford, M. L. J., Bond, C. T., Blair, T. A., and Adelman, J. P. (1994) Nature 370, 456-459), was reported to form an ATP-sensitive inwardly rectifying K+ channel, IKATP. We attempted to determine whether CIR alone or together with an unknown protein(s) participated in the formation of cardiac IKATP. Expression of CIR in insect, oocyte, and mammalian cell systems did not increase the appearance of ATP-sensitive currents, but rather gave rise to unique strongly inwardly rectifying, G protein-regulated K+ currents. CIR protein is found exclusively in atria, in contrast to the predominance of IKATP functional activity in ventricle. Also, CIR was completely depleted from heart membrane after immunodepletion of GIRK1. We conclude that CIR/rcKATP-1 is not a subunit of cardiac IKATP and that GIRK1 is the only channel protein coassociating with CIR in heart.


Asunto(s)
Adenosina Trifosfato/metabolismo , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Transportadoras de Casetes de Unión a ATP , Animales , Baculoviridae/genética , Células CHO , Bovinos , Línea Celular , Cricetinae , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Humanos , Canales KATP , Canales de Potasio/genética , Spodoptera
16.
J Biol Chem ; 270(49): 29059-62, 1995 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-7493925

RESUMEN

The cardiac G protein-gated K+ channel, IKACh, is activated by application of purified and recombinant beta and gamma subunits (G beta gamma) of heterotrimeric G proteins to excised inside-out patches from atrial membranes (Logothetis, D. E., Kurachi, Y., Galper, J., Neer, E., and Clapham, D. E. (1987) Nature 325, 321-326; Wickman, K., Iniguez-Lluhi, J., Davenport, P., Taussig, R. A., Krapivinsky, G. B., Linder, M. E., Gilman, A., and Clapham, D.E. (1994) Nature 368, 255-257). Cardiac IKACh is composed of two inward rectifier K+ channel subunits, GIRK1 and CIR (Krapivinsky, G., Gordon, E., Wickman, K., Velimirovic, B., Krapivinsky, L., and Clapham, D. E. (1995) Nature 374, 135-141). We show that G beta gamma directly binds to immunoprecipitated cardiac IKACh as well as to recombinant CIR and GIRK1 subunits, with dissociation constants (Kd) of 55, 50, and 125 nM, respectively. In each case, binding appeared specific as judged by competition of unlabeled G beta gamma with radiolabeled G beta gamma and inhibition of binding by antigenic peptide or G alpha-GDP, but not G alpha-GTP gamma S (guanosine 5'-3-O-(thio)triphosphate). In contrast, G alpha (GTP gamma S- or GDP-bound) did not bind to the native channel. We conclude that G beta gamma binds directly and specifically to IKACh via interactions with both CIR and GIRK1 subunits to gate the channel.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Activación del Canal Iónico , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Animales , Bovinos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Miocardio/metabolismo , Proteínas Recombinantes/metabolismo
17.
Physiol Rev ; 75(4): 865-85, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7480165

RESUMEN

Ion channels are poised uniquely to initiate, mediate, or regulate such distinct cellular activities as action potential propagation, secretion, and gene transcription. In retrospect, it is not surprising that studies of ion channels have revealed considerable diversities in their primary structures, regulation, and expression. From a functional standpoint, the various mechanisms coopted by cells to regulate channel activity are particularly fascinating. Extracellular ligands, membrane potential, phosphorylation, ions themselves, and diffusible second messengers are all well-established regulators of ion channel activity. Heterotrimeric GTP-binding proteins (G proteins) mediate many of these types of ion channel regulation by stimulating or inhibiting phosphorylation pathways, initiating intracellular cascades leading to elevation of cytosolic Ca2+ or adenosine 3',5'-cyclic monophosphate levels, or by generating various lipid-derived compounds. In some cases, it seems that activated G protein subunits can interact directly with ion channels to elicit regulation. Although there is currently little direct biochemical evidence to support such a mechanism, it is the working hypothesis for the most-studied G protein-regulated ion channels.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Canales Iónicos/fisiología , Receptores de Superficie Celular/fisiología , Potenciales de Acción/fisiología , Animales , Canales de Calcio/fisiología , Membrana Celular/fisiología , Corazón/fisiología , Homeostasis , Humanos , Ligandos , Mamíferos , Canales de Potasio/fisiología , Sistemas de Mensajero Secundario , Transducción de Señal
18.
Curr Opin Neurobiol ; 5(3): 278-85, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7580149

RESUMEN

Even though the vast majority of ion channels are regulated by voltage, extracellular ligands, phosphorylation, intracellular ions, or a combination of these influences, probably only a handful of ion channels are regulated by direct interaction with activated G proteins. Although results from electrophysiological studies of some channels are consistent with the hypothesis of regulation via direct physical interactions with G proteins, strong biochemical evidence for such interactions is still lacking. In most cases, such evidence has been difficult to obtain because ion channels are present at very low abundances in cell membranes, or because the molecular identity of the channel is unknown. The recent cloning of members of the inwardly rectifying K+ channel and voltage-gated Ca2+ channel families should facilitate the rigorous study of the putative interactions between G proteins and ion channels.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Canales Iónicos/metabolismo , Animales , Canales de Calcio/fisiología , Modelos Biológicos , Canales de Potasio/fisiología , Canales de Sodio/fisiología
19.
Nature ; 374(6518): 135-41, 1995 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-7877685

RESUMEN

Heart rate is slowed in part by acetylcholine-dependent activation of a cardiac potassium (K+) channel, IKACh. Activated muscarinic receptors stimulate IKACh via the G-protein beta gamma-subunits. It has been assumed that the inwardly rectifying K(+)-channel gene, GIRK1, alone encodes IKACh. It is now shown that IKACh is a heteromultimer of two distinct inwardly rectifying K(+)-channel subunits, GIRK1 and a newly cloned member of the family, CIR.


Asunto(s)
Miocardio/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/química , Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Clonación Molecular , Perros , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Proteínas de Unión al GTP/metabolismo , Activación del Canal Iónico , Potenciales de la Membrana , Datos de Secuencia Molecular , Oocitos , Canales de Potasio/genética , Conformación Proteica , Ratas , Proteínas Recombinantes , Xenopus
20.
Nature ; 368(6468): 255-7, 1994 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-8145826

RESUMEN

Acetylcholine activates inwardly rectifying potassium channels (IK.ACh) in the heart through muscarinic receptor binding and activation of pertussis-toxin-sensitive G proteins. Experiments showing that only the beta gamma-subunit (G beta gamma) activates IK.ACh (ref. 4) were challenged by reports that only the activated alpha-subunit (G alpha) was effective. Here we examine IK.ACh regulation using purified brain and recombinant G-protein subunits. Six recombinant G beta gamma-subunits activated IK.ACh with apparent half-maximal activation concentrations of 3-30 nM. Activation of IK.ACh by recombinant G alpha-GTP gamma S was observed, but this was probably due to release of GTP gamma S from the protein. Importantly, IK.ACh activity elicited by GTP gamma S was inhibited by purified brain and recombinant G alpha-GDP, suggesting that native G beta gamma plays a major role in this pathway. We conclude that G beta gamma is a primary regulator of IK.ACh activity.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Canales de Potasio/metabolismo , Acetilcolina/metabolismo , Animales , Encéfalo/metabolismo , Bovinos , Línea Celular , Ácidos Cólicos , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Difosfato/metabolismo , Activación del Canal Iónico , Miocardio/citología , Miocardio/metabolismo , Ratas , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...