Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669240

RESUMEN

Strong scientific writing skills are the foundation of a successful research career and require training and practice. Although these skills are critical for completing a PhD, most students receive little formal writing instruction prior to joining a graduate program. In 2015, the University of Iowa Medical Scientist Training Program (MSTP) addressed this issue by developing the scientific writing course Grant Writing Basics (GWB). Here we describe the structure of this course and its effectiveness. GWB is an interactive, workshop-based course that uses a National Institutes of Health (NIH) F30 predoctoral fellowship proposal as a platform for building writing expertise. GWB incorporates established pedagogical principles of adult learning, including flipped classrooms, peer teaching, and reiterative evaluation. Time spent in class centers on active student analysis of previously submitted fellowship applications, discussion of writing resources, active writing, facilitated small group discussion of critiques of student writing samples, revision, and a discussion with a panel of experienced study section members and a student who completed a fellowship submission. Outcomes of GWB include a substantial increase in the number of applications submitted and fellowships awarded. Rigorous evaluation provides evidence that learning objectives were met and that students gained confidence in both their scientific writing skills and their ability to give constructive feedback. Our findings show that investment in formal training in written scientific communication provides a foundation for good writing habits, and the knowledge and skills needed to succeed in this vital aspect of a scientific research career. Furthermore, they highlight that evaluation is valuable in guiding course evolution. Strategies embedded in GWB can be adapted for use in any graduate program to advance scientific writing skills among its trainees.


Asunto(s)
Educación de Postgrado , Becas , Escritura , Humanos , Educación de Postgrado/métodos , Curriculum , Estudiantes , Estados Unidos
2.
BMC Ecol ; 18(1): 21, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30001194

RESUMEN

BACKGROUND: We challenge the oft-repeated claim that the beetles (Coleoptera) are the most species-rich order of animals. Instead, we assert that another order of insects, the Hymenoptera, is more speciose, due in large part to the massively diverse but relatively poorly known parasitoid wasps. The idea that the beetles have more species than other orders is primarily based on their respective collection histories and the relative availability of taxonomic resources, which both disfavor parasitoid wasps. Though it is unreasonable to directly compare numbers of described species in each order, the ecology of parasitic wasps-specifically, their intimate interactions with their hosts-allows for estimation of relative richness. RESULTS: We present a simple logical model that shows how the specialization of many parasitic wasps on their hosts suggests few scenarios in which there would be more beetle species than parasitic wasp species. We couple this model with an accounting of what we call the "genus-specific parasitoid-host ratio" from four well-studied genera of insect hosts, a metric by which to generate extremely conservative estimates of the average number of parasitic wasp species attacking a given beetle or other insect host species. CONCLUSIONS: Synthesis of our model with data from real host systems suggests that the Hymenoptera may have 2.5-3.2× more species than the Coleoptera. While there are more described species of beetles than all other animals, the Hymenoptera are almost certainly the larger order.


Asunto(s)
Biodiversidad , Escarabajos , Interacciones Huésped-Parásitos , Himenópteros , Animales , Rasgos de la Historia de Vida , Modelos Biológicos , Filogenia
3.
Evolution ; 71(5): 1126-1137, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28052326

RESUMEN

The notion that shifts to new hosts can initiate insect speciation is more than 150 years old, yet widespread conflation with paradigms of sympatric speciation has led to confusion about how much support exists for this hypothesis. Here, we review 85 insect systems and evaluate the relationship between host shifting, reproductive isolation, and speciation. We sort insects into five categories: (1) systems in which a host shift has initiated speciation; (2) systems in which a host shift has made a contribution to speciation; (3) systems in which a host shift has caused the evolution of new reproductive isolating barriers; (4) systems with host-associated genetic differences; and (5) systems with no evidence of host-associated genetic differences. We find host-associated genetic structure in 65 systems, 43 of which show that host shifts have resulted in the evolution of new reproductive barriers. Twenty-six of the latter also support a role for host shifts in speciation, including eight studies that definitively support the hypothesis that a host shift has initiated speciation. While this review is agnostic as to the fraction of all insect speciation events to which host shifts have contributed, it clarifies that host shifts absolutely can and do initiate speciation.


Asunto(s)
Especiación Genética , Insectos , Animales , Reproducción , Aislamiento Reproductivo , Especificidad de la Especie , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...