Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 21(4): 481-93, 2006 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-16483930

RESUMEN

K-Ras associates with the plasma membrane (PM) through farnesylation that functions in conjunction with an adjacent polybasic sequence. We show that phosphorylation by protein kinase C (PKC) of S181 within the polybasic region promotes rapid dissociation of K-Ras from the PM and association with intracellular membranes, including the outer membrane of mitochondria where phospho-K-Ras interacts with Bcl-XL. PKC agonists promote apoptosis of cells transformed with oncogenic K-Ras in a S181-dependent manner. K-Ras with a phosphomimetic residue at position 181 induces apoptosis via a pathway that requires Bcl-XL. The PKC agonist bryostatin-1 inhibited the growth in vitro and in vivo of cells transformed with oncogenic K-Ras in a S181-dependent fashion. These data demonstrate that the location and function of K-Ras are regulated directly by PKC and suggest an approach to therapy of K-Ras-dependent tumors with agents that stimulate phosphorylation of S181.


Asunto(s)
Apoptosis/fisiología , Genes ras , Mitocondrias/metabolismo , Proteína Quinasa C/metabolismo , Proteína bcl-X/metabolismo , Secuencia de Aminoácidos , Animales , Antineoplásicos/metabolismo , Brioestatinas , Línea Celular , Membrana Celular/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrólidos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Neoplasias/metabolismo , Neoplasias/patología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Serina/metabolismo , Transducción de Señal/fisiología , Electricidad Estática , Linfocitos T/fisiología
2.
J Cell Biol ; 164(3): 461-70, 2004 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-14757755

RESUMEN

Rap1 and Ras are closely related GTPases that share some effectors but have distinct functions. We studied the subcellular localization of Rap1 and its sites of activation in living cells. Both GFP-tagged Rap1 and endogenous Rap1 were localized to the plasma membrane (PM) and endosomes. The PM association of GFP-Rap1 was dependent on GTP binding, and GFP-Rap1 was rapidly up-regulated on this compartment in response to mitogens, a process blocked by inhibitors of endosome recycling. A novel fluorescent probe for GTP-bound Rap1 revealed that this GTPase was transiently activated only on the PM of both fibroblasts and T cells. Activation on the PM was blocked by inhibitors of endosome recycling. Moreover, inhibition of endosome recycling blocked the ability of Rap1 to promote integrin-mediated adhesion of T cells. Thus, unlike Ras, the membrane localizations of Rap1 are dynamically regulated, and the PM is the principle platform from which Rap1 signaling emanates. These observations may explain some of the biological differences between these GTPases.


Asunto(s)
Adhesión Celular/fisiología , Membrana Celular/metabolismo , Linfocitos T/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Endosomas/metabolismo , Activación Enzimática , Factor de Crecimiento Epidérmico/metabolismo , Exocitosis/fisiología , Aparato de Golgi/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Mitógenos/farmacología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Fracciones Subcelulares/química , Fracciones Subcelulares/metabolismo , Regulación hacia Arriba
3.
Proc Natl Acad Sci U S A ; 99(23): 15066-71, 2002 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-12417746

RESUMEN

We have generated an animal model for mitochondrial myopathy by disrupting the gene for mitochondrial transcription factor A (Tfam) in skeletal muscle of the mouse. The knockout animals developed a myopathy with ragged-red muscle fibers, accumulation of abnormally appearing mitochondria, and progressively deteriorating respiratory chain function in skeletal muscle. Enzyme histochemistry, electron micrographs, and citrate synthase activity revealed a substantial increase in mitochondrial mass in skeletal muscle of the myopathy mice. Biochemical assays demonstrated that the increased mitochondrial mass partly compensated for the reduced function of the respiratory chain by maintaining overall ATP production in skeletal muscle. The increased mitochondrial mass thus was induced by the respiratory chain deficiency and may be beneficial by improving the energy homeostasis in the affected tissue. Surprisingly, in vitro experiments to assess muscle function demonstrated that fatigue development did not occur more rapidly in myopathy mice, suggesting that overall ATP production is sufficient. However, there were lower absolute muscle forces in the myopathy mice, especially at low stimulation frequencies. This reduction in muscle force is likely caused by deficient formation of force-generating actin-myosin cross bridges and/or disregulation of Ca(2+) homeostasis. Thus, both biochemical measurements of ATP-production rate and in vitro physiological studies suggest that reduced mitochondrial ATP production might not be as critical for the pathophysiology of mitochondrial myopathy as thought previously.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Musculares/patología , Miopatías Mitocondriales/genética , Animales , Cruzamientos Genéticos , ADN Ribosómico/genética , Modelos Animales de Enfermedad , Estimulación Eléctrica , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Musculares/fisiología , Contracción Muscular/fisiología , Fibras Musculares de Contracción Rápida/patología , Relajación Muscular , Consumo de Oxígeno/genética , ARN Ribosómico 18S/genética , Valores de Referencia , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...