Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 20160, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978239

RESUMEN

Global change alters hydro-climatic conditions, affects land use, and contributes to more frequent droughts and floods. Large artificial reservoirs may effectively alleviate hydro-climatic extremes, but their storage capacities are threatened by sedimentation processes, which in turn are exacerbated by land use change. Envisioning strategies for sustainable reservoir management requires interdisciplinary model chains to emulate key processes driving sedimentation under global change scenarios. Therefore, we introduce a model chain for the long-term prediction of complex three-dimensional (3d) reservoir sedimentation considering concurrent catchment, hydro-climatic, and land-use conditions. Applied to a mountainous Mediterranean catchment, the model chain predicts increased sediment production and decreased discharge for high and medium emission pathways. Increased winter precipitation, accompanied by a transition from snowfall to rainfall, is projected to aggravate reduced summer precipitation, emphasizing a growing need for reservoirs. Additionally, higher winter precipitation proliferates sediment production and reservoir sedimentation. Land use change can outweigh the increased reservoir sedimentation originating from hydro-climatic change, which highlights the significance of localized actions to reduce sediment production. Finally, a 3d hydro-morphodynamic model provides insights into interactions between global change and reservoir sedimentation with spatially explicit information on future sedimentation patterns facilitating the implementation of management strategies.

2.
Biofouling ; 34(6): 618-629, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30149732

RESUMEN

The adhesiveness and stability of ubiquitously distributed biofilms is a significant issue in many areas such as ecology, biotechnology and medicine. The magnetic particle induction (MagPI) system allows precise determinations of biofilm adhesiveness at high temporal and spatial resolution on the mesoscale. This paper concerns several technical aspects to further improve the performance of this powerful experimental approach and enhance the range of MagPI applications. First, several electromagnets were built to demonstrate the influence of material and geometry with special regard to core remanence and magnetic strength. Secondly, the driving force to lift up the particles was evaluated and it was shown that both the magnetic field strength and the magnetic field gradient are decisive in the physics of the MagPI approach. The intricate combination of these two quantities was demonstrated with separate experiments that add permanent magnets to the MagPI system.


Asunto(s)
Biopelículas , Campos Magnéticos , Adhesividad
3.
Environ Int ; 79: 85-105, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25801101

RESUMEN

Anthropogenic Trace Compounds (ATCs) that continuously grow in numbers and concentrations are an emerging issue for water quality in both natural and technical environments. The complex web of exposure pathways as well as the variety in the chemical structure and potency of ATCs represents immense challenges for future research and policy initiatives. This review summarizes current trends and identifies knowledge gaps in innovative, effective monitoring and management strategies while addressing the research questions concerning ATC occurrence, fate, detection and toxicity. We highlight the progressing sensitivity of chemical analytics and the challenges in harmonization of sampling protocols and methods, as well as the need for ATC indicator substances to enable cross-national valid monitoring routine. Secondly, the status quo in ecotoxicology is described to advocate for a better implementation of long-term tests, to address toxicity on community and environmental as well as on human-health levels, and to adapt various test levels and endpoints. Moreover, we discuss potential sources of ATCs and the current removal efficiency of wastewater treatment plants (WWTPs) to indicate the most effective places and elimination strategies. Knowledge gaps in transport and/or detainment of ATCs through their passage in surface waters and groundwaters are further emphasized in relation to their physico-chemical properties, abiotic conditions and biological interactions in order to highlight fundamental research needs. Finally, we demonstrate the importance and remaining challenges of an appropriate ATC risk assessment since this will greatly assist in identifying the most urgent calls for action, in selecting the most promising measures, and in evaluating the success of implemented management strategies.


Asunto(s)
Monitoreo del Ambiente/métodos , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/análisis , Ecosistema , Humanos , Medición de Riesgo/métodos , Oligoelementos/toxicidad , Contaminación Química del Agua/legislación & jurisprudencia , Contaminación Química del Agua/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA