Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38088780

RESUMEN

We have designed an experimental setup allowing to simultaneously measure both the dielectric response of a supercooled liquid and the dynamics of azobenzene chromophores dispersed in it. Both the azobenzene chromophores and the organic glass former have been synthesized with similar reaction paths: they are chemically similar, apart from the azobenzene group responsible for the strong optical absorption in the [350; 450 nm] range for the chromophores, while the embedding supercooled liquid is optically transparent. This material is deposited on transparent electrodes with an inter-electrode gap as small as 4 µm-obtained thanks to optical lithographic techniques. We show that our setup is sensitive enough to measure the coupling between the dielectric macroscopic response and the isomerization dynamics of 1% of chromophores excited by a 0.5-5 mW/cm2 light beam. We demonstrate that this coupling neither comes from the heating of the sample due to the light absorption nor from changes of the sample shape with light. Finally, we discuss the few physical effects, which may give rise to this coupling, and show that our experiment could test some recent predictions done in the framework of random first order transition theory of the glassy state.

2.
Phys Rev E ; 96(3-1): 032611, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29346923

RESUMEN

This work aims at reconsidering several interpretations coexisting in the recent literature concerning nonlinear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate, showing that the three independent cubic susceptibilities have very similar frequency and temperature dependences, for both their amplitudes and phases. This strongly suggests a unique physical mechanism responsible for the growth of these nonlinear susceptibilities. We show that the framework proposed by two of us [J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204 (2005)PRBMDO1098-012110.1103/PhysRevB.72.064204], where the growth of nonlinear susceptibilities is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then review several complementary and/or alternative models and show that the notion of cooperatively rearranging glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments, which should deepen our understanding of glasses.

3.
Nat Commun ; 7: 12466, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27578459

RESUMEN

The three-dimensional incompressible Navier-Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier-Stokes equation.

4.
Science ; 352(6291): 1308-11, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27284191

RESUMEN

Glasses are ubiquitous in daily life and technology. However, the microscopic mechanisms generating this state of matter remain subject to debate: Glasses are considered either as merely hyperviscous liquids or as resulting from a genuine thermodynamic phase transition toward a rigid state. We show that third- and fifth-order susceptibilities provide a definite answer to this long-standing controversy. Performing the corresponding high-precision nonlinear dielectric experiments for supercooled glycerol and propylene carbonate, we find strong support for theories based on thermodynamic amorphous order. Moreover, when lowering temperature, we find that the growing transient domains are compact--that is, their fractal dimension d(f) = 3. The glass transition may thus represent a class of critical phenomena different from canonical second-order phase transitions for which d(f) < 3.

5.
J Chem Phys ; 143(5): 054902, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26254665

RESUMEN

The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 82 meV K(-1). Such a property may be used to improve the thermoelectric coefficients in liquid thermocells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA