Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(14): 17085-17092, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33787195

RESUMEN

The limited long-term stability of metal halide perovskite-based solar cells is a bottleneck in their drive toward widespread commercial adaptation. The organic hole-transport materials (HTMs) have been implicated in the degradation, and metal oxide layers are proposed as alternatives. One of the most prominent metal oxide HTM in organic photovoltaics is MoO3. However, the use of MoO3 as HTM in metal halide perovskite-based devices causes a severe solar cell deterioration. Thus, the formation of the MoO3/CH3NH3PbI3-xClx (MAPbI3-xClx) heterojunction is systematically studied by synchrotron-based hard X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. Upon MoO3 deposition, significant chemical interaction is induced at the MoO3/MAPbI3-xClx interface: substoichiometric molybdenum oxide is present, and the perovskite decomposes in the proximity of the interface, leading to accumulation of PbI2 on the MoO3 cover layer. Furthermore, we find evidence for the formation of new compounds such as PbMoO4, PbN2O2, and PbO as a result of the MAPbI3-xClx decomposition and suggest chemical reaction pathways to describe the underlying mechanism. These findings suggest that the (direct) MoO3/MAPbI3-xClx interface may be inherently unstable. It provides an explanation for the low power conversion efficiencies of metal halide perovskite solar cells that use MoO3 as a hole-transport material and in which there is a direct contact between MoO3 and perovskite.

2.
ACS Omega ; 4(6): 10985-10990, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31460196

RESUMEN

The chemical and electronic structure of MoO3 thin films is monitored by synchrotron-based hard X-ray photoelectron spectroscopy while annealing from room temperature to 310 °C. Color-coded 2D intensity maps of the Mo 3d and O 1s and valence band maximum (VBM) spectra show the evolution of the annealing-induced changes. Broadening of the Mo 3d and O 1s spectra indicate the reduction of MoO3. At moderate temperatures (120-200 °C), we find spectral evidence for the formation of Mo5+ and at higher temperatures (>165 °C) also of Mo4+ states. These states can be related to the spectral intensity above the VBM attributed to O vacancy induced gap states caused by partial filling of initially unoccupied Mo 4d-derived states. A clear relation between annealing temperature and the induced changes in the chemical and electronic structure suggests this approach as a route for deliberate tuning of MoO3 thin-film properties.

3.
Nanotechnology ; 30(24): 245401, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30812018

RESUMEN

The local efficiency of hybrid ZnO-nanorods/C60/ZnPc:C60/MoO3/Ag solar cells, with different nanorods length has been investigated by scanning near-field optical microscopy. Simultaneous spatially resolved measurements of topography and photocurrent suggest a waveguide effect enhancement of the local photocurrent. This interpretation is supported by finite element method simulations of the light propagation in the solar cell.

4.
Dalton Trans ; 45(40): 15828-15839, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27466782

RESUMEN

The electronic structures of dinuclear copper complexes of the general formula [GFA(CuX2)2], where X = Br or Cl and GFA denotes a redox-active bridging Guanidino-Functionalized Aromatic ligand, were analysed and compared. The diamagnetic complexes [GFA(CuBr2)2] can all be described as dinuclear CuI complexes with bridging GFA2+ dicationic ligand units exhibiting a [CuI-GFA2+-CuI] electronic structure. The electronic structure prevails in the solid state and in all applicable organic solvents. The situation changes completely for the [GFA(CuCl2)2] complexes. They are paramagnetic in the solid state, where they are adequately described as dinuclear CuII complexes with neutral bridging GFA ligand units ([CuII-GFA-CuII]). In solution, they exist either as [CuII-GFA-CuII] or as valence-tautomeric [CuI-GFA2+-CuI] complexes, depending on the polarity of the solvent. Only in the case of GFA = 2,3,5,6-tetrakis(tetramethylguanidino)pyridine and in acetone as solvent, the two valence tautomers are in a temperature-dependent equilibrium. Quantum chemical computations show that the structural difference between the two valence tautomeric forms is smaller for this complex than for the others, explaining the low energy barrier for the intramolecular electron transfer in accordance with Marcus theory.

5.
Chemistry ; 22(30): 10438-45, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27310335

RESUMEN

We report on the first valence tautomeric dinuclear copper complex, featuring 2,3,5,6-tetrakis(tetramethylguanidino)pyridine as a bridging redox-active GFA (guanidino-functionalized aromatic) ligand. The preferred electronic structure of the complex is massively influenced by the environment. In the solid state and in nonpolar solvents a paramagnetic, dinuclear Cu(II) complex with a neutral GFA ligand is present. In polar solvents, the electronic structure changes to a diamagnetic, dinuclear Cu(I) complex with a twofold-oxidized GFA ligand. Using acetone as a solvent, both electronic structures are accessible due to a temperature-dependent equilibrium between the two valence tautomeric complexes. Our results pave the way for a broader use of valence tautomeric transition-metal complexes in catalytic reactions since anionic coligands can now be tolerated owing to the neutral/positively charged GFA ligand.

6.
Chemistry ; 21(46): 16494-503, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26418042

RESUMEN

Tetranuclear, intensely blue-coloured Cu(I) complexes were synthesised in which two Cu2 X3 (-) units (X=Br or I) are bridged by a dicationic GFA (guanidino-functionalised aromatic) ligand. The UV/Vis spectra show a large metal-to-ligand charge-transfer (MLCT) band around 638 nm. The tetranuclear "low-temperature" complexes are in a temperature-dependent equilibrium with dinuclear Cu(I) "high-temperature" complexes, which result from the reversible elimination of two CuX groups. A massive thermochromism effect results from the extinction of the strong MLCT band upon CuX elimination with increasing temperature. For all complexes, quantum chemical calculations predict a small and method-dependent energy difference between the possible electronic structures, namely Cu(I) and dicationic GFA ligand (closed-shell singlet) versus Cu(II) and neutral GFA ligand (triplet or broken-symmetry state). The closed-shell singlet state is disfavoured by hybrid-DFT functionals, which mix in exact Hartree-Fock exchange, and is favoured by larger basis sets and consideration of a polar medium.

7.
Chemistry ; 20(20): 5914-25, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24757064

RESUMEN

Herein the synthesis, structures and properties of hydrogen-bonded aggregates involving redox-active guanidine superbases are reported. Reversible hydrogen bonding is switched on by oxidation of the hydrogen-donor unit, and leads to formation of aggregates in which the hydrogen-bond donor unit is sandwiched by two hydrogen-bond acceptor units. Further oxidation (of the acceptor units) leads again to deaggregation. Aggregate formation is associated with a distinct color change, and the electronic situation could be described as a frozen stage on the way to hydrogen transfer. A further increase in the basicity of the hydrogen-bond acceptor leads to deprotonation reactions.


Asunto(s)
Guanidina/química , Hidrógeno/química , Colorantes/síntesis química , Colorantes/química , Guanidina/síntesis química , Enlace de Hidrógeno , Modelos Moleculares , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...