Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
bioRxiv ; 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37425961

RESUMEN

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

3.
Nat Neurosci ; 25(8): 984-998, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35835882

RESUMEN

Optogenetic actuators enable highly precise spatiotemporal interrogation of biological processes at levels ranging from the subcellular to cells, circuits and behaving organisms. Although their application in neuroscience has traditionally focused on the control of spiking activity at the somatodendritic level, the scope of optogenetic modulators for direct manipulation of presynaptic functions is growing. Presynaptically localized opsins combined with light stimulation at the terminals allow light-mediated neurotransmitter release, presynaptic inhibition, induction of synaptic plasticity and specific manipulation of individual components of the presynaptic machinery. Here, we describe presynaptic applications of optogenetic tools in the context of the unique cell biology of axonal terminals, discuss their potential shortcomings and outline future directions for this rapidly developing research area.


Asunto(s)
Optogenética , Transmisión Sináptica , Plasticidad Neuronal , Opsinas/genética , Terminales Presinápticos , Transmisión Sináptica/fisiología
4.
Commun Biol ; 5(1): 687, 2022 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810216

RESUMEN

Optogenetic silencing allows to reveal the necessity of selected neuronal populations for various neurophysiological functions. These range from synaptic transmission and coordinated neuronal network activity to control of specific behaviors. An ideal single-component optogenetic silencing tool should be switchable between active and inactive states with precise timing while preserving its activity in the absence of light until switched to an inactive state. Although bistable anion-conducting channelrhodopsins (ACRs) were previously engineered to reach this goal, their conducting state lifetime was limited to only a few minutes and some ACRs were not fully switchable. Here we report Aion, a bistable ACR displaying a long-lasting open state with a spontaneous closing time constant close to 15 min. Moreover, Aion can be switched between the open and closed state with millisecond precision using blue and orange light, respectively. The long conducting state enables overnight silencing of neurons with minimal light exposure. We further generated trafficking-optimized versions of Aion, which show enhanced membrane localization and allow precisely timed, long-lasting all-optical control of nociceptive responses in larvae of Drosophila melanogaster. Thus, Aion is an optogenetic silencing tool for inhibition of neuronal activity over many hours which can be switched between an active and inactive state with millisecond precision.


Asunto(s)
Drosophila melanogaster , Optogenética , Animales , Aniones/metabolismo , Channelrhodopsins/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuronas/fisiología
5.
Nat Struct Mol Biol ; 29(6): 592-603, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35710843

RESUMEN

Many organisms sense light using rhodopsins, photoreceptive proteins containing a retinal chromophore. Here we report the discovery, structure and biophysical characterization of bestrhodopsins, a microbial rhodopsin subfamily from marine unicellular algae, in which one rhodopsin domain of eight transmembrane helices or, more often, two such domains in tandem, are C-terminally fused to a bestrophin channel. Cryo-EM analysis of a rhodopsin-rhodopsin-bestrophin fusion revealed that it forms a pentameric megacomplex (~700 kDa) with five rhodopsin pseudodimers surrounding the channel in the center. Bestrhodopsins are metastable and undergo photoconversion between red- and green-absorbing or green- and UVA-absorbing forms in the different variants. The retinal chromophore, in a unique binding pocket, photoisomerizes from all-trans to 11-cis form. Heterologously expressed bestrhodopsin behaves as a light-modulated anion channel.


Asunto(s)
Canales Iónicos , Rodopsina , Bestrofinas , Rodopsina/química
6.
Neuron ; 109(10): 1621-1635.e8, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33979634

RESUMEN

Information is carried between brain regions through neurotransmitter release from axonal presynaptic terminals. Understanding the functional roles of defined neuronal projection pathways requires temporally precise manipulation of their activity. However, existing inhibitory optogenetic tools have low efficacy and off-target effects when applied to presynaptic terminals, while chemogenetic tools are difficult to control in space and time. Here, we show that a targeting-enhanced mosquito homolog of the vertebrate encephalopsin (eOPN3) can effectively suppress synaptic transmission through the Gi/o signaling pathway. Brief illumination of presynaptic terminals expressing eOPN3 triggers a lasting suppression of synaptic output that recovers spontaneously within minutes in vitro and in vivo. In freely moving mice, eOPN3-mediated suppression of dopaminergic nigrostriatal afferents induces a reversible ipsiversive rotational bias. We conclude that eOPN3 can be used to selectively suppress neurotransmitter release at presynaptic terminals with high spatiotemporal precision, opening new avenues for functional interrogation of long-range neuronal circuits in vivo.


Asunto(s)
Dopamina/metabolismo , Proteínas de Insectos/genética , Optogenética/métodos , Rodopsina/genética , Potenciales Sinápticos , Animales , Células Cultivadas , Culicidae , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Células HEK293 , Humanos , Proteínas de Insectos/metabolismo , Locomoción , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Rodopsina/metabolismo , Sustancia Negra/citología , Sustancia Negra/fisiología
7.
Curr Biol ; 30(24): 4910-4920.e5, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33065010

RESUMEN

Channelrhodopsins (ChRs) are light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. The currently characterized ChR families include green algal and cryptophyte cation-conducting ChRs (CCRs) and cryptophyte, haptophyte, and stramenopile anion-conducting ChRs (ACRs). Here, we report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal hosts. These previously unknown viral and green algal ChRs act as ACRs when expressed in cultured neuroblastoma-derived cells and are likely involved in behavioral responses to light.


Asunto(s)
Channelrhodopsins/genética , Chlorophyta/genética , Transferencia de Gen Horizontal , Genes Virales , Virus Gigantes/genética , Animales , Aniones/metabolismo , Línea Celular , Channelrhodopsins/metabolismo , Chlorophyta/metabolismo , Chlorophyta/efectos de la radiación , Chlorophyta/virología , Virus Gigantes/metabolismo , Células Híbridas , Luz , Metagenómica , Ratones , Optogenética , Filogenia , Ratas
8.
Nat Commun ; 10(1): 3315, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346176

RESUMEN

Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. ChRs desensitize under continuous bright-light illumination, resulting in a significant decline of photocurrents. Here we describe a metagenomically identified family of phylogenetically distinct anion-conducting ChRs (designated MerMAIDs). MerMAIDs almost completely desensitize during continuous illumination due to accumulation of a late non-conducting photointermediate that disrupts the ion permeation pathway. MerMAID desensitization can be fully explained by a single photocycle in which a long-lived desensitized state follows the short-lived conducting state. A conserved cysteine is the critical factor in desensitization, as its mutation results in recovery of large stationary photocurrents. The rapid desensitization of MerMAIDs enables their use as optogenetic silencers for transient suppression of individual action potentials without affecting subsequent spiking during continuous illumination. Our results could facilitate the development of optogenetic tools from metagenomic databases and enhance general understanding of ChR function.


Asunto(s)
Aniones/metabolismo , Bacterias/genética , Channelrhodopsins/genética , Familia de Multigenes , Virus/genética , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Humanos , Cinética , Luz , Metagenoma , Neuronas/metabolismo , Optogenética , Filogenia , Agua de Mar/microbiología , Agua de Mar/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus/clasificación , Virus/aislamiento & purificación , Virus/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(19): 9380-9389, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004059

RESUMEN

Although channelrhodopsin (ChR) is a widely applied light-activated ion channel, important properties such as light adaptation, photocurrent inactivation, and alteration of the ion selectivity during continuous illumination are not well understood from a molecular perspective. Herein, we address these open questions using single-turnover electrophysiology, time-resolved step-scan FTIR, and Raman spectroscopy of fully dark-adapted ChR2. This yields a unifying parallel photocycle model integrating now all so far controversial discussed data. In dark-adapted ChR2, the protonated retinal Schiff base chromophore (RSBH+) adopts an all-trans,C=N-anti conformation only. Upon light activation, a branching reaction into either a 13-cis,C=N-anti or a 13-cis,C=N-syn retinal conformation occurs. The anti-cycle features sequential H+ and Na+ conductance in a late M-like state and an N-like open-channel state. In contrast, the 13-cis,C=N-syn isomer represents a second closed-channel state identical to the long-lived P480 state, which has been previously assigned to a late intermediate in a single-photocycle model. Light excitation of P480 induces a parallel syn-photocycle with an open-channel state of small conductance and high proton selectivity. E90 becomes deprotonated in P480 and stays deprotonated in the C=N-syn cycle. Deprotonation of E90 and successive pore hydration are crucial for late proton conductance following light adaptation. Parallel anti- and syn-photocycles now explain inactivation and ion selectivity changes of ChR2 during continuous illumination, fostering the future rational design of optogenetic tools.


Asunto(s)
Cationes/metabolismo , Channelrhodopsins/química , Channelrhodopsins/metabolismo , Cationes/química , Channelrhodopsins/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Células HEK293 , Humanos , Isomerismo , Luz , Conformación Proteica , Protones , Retinaldehído/química
10.
Sci Rep ; 8(1): 4765, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540835

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

11.
Sci Rep ; 7(1): 14957, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097684

RESUMEN

Genetic engineering of natural light-gated ion channels has proven a powerful way to generate optogenetic tools for a wide variety of applications. In recent years, blue-light activated engineered anion-conducting channelrhodopsins (eACRs) have been developed, improved, and were successfully applied in vivo. We asked whether the approaches used to create eACRs can be transferred to other well-characterized cation-conducting channelrhodopsins (CCRs) to obtain eACRs with a broad spectrum of biophysical properties. We generated 22 variants using two conversion strategies applied to 11 CCRs and screened them for membrane expression, photocurrents and anion selectivity. We obtained two novel eACRs, Phobos and Aurora, with blue- and red-shifted action spectra and photocurrents similar to existing eACRs. Furthermore, step-function mutations greatly enhanced the cellular operational light sensitivity due to a slowed-down photocycle. These bi-stable eACRs can be reversibly toggled between open and closed states with brief light pulses of different wavelengths. All new eACRs reliably inhibited action potential firing in pyramidal CA1 neurons. In Drosophila larvae, eACRs conveyed robust and specific light-dependent inhibition of locomotion and nociception.


Asunto(s)
Potenciales de Acción , Aniones/metabolismo , Channelrhodopsins/genética , Optogenética/métodos , Ingeniería de Proteínas/métodos , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Channelrhodopsins/metabolismo , Drosophila , Células HEK293 , Humanos , Cinética , Luz , Mutación , Neuronas/citología , Neuronas/metabolismo
12.
J Vis Exp ; (123)2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28570519

RESUMEN

Over the past decade, channelrhodopsins became indispensable in neuroscientific research where they are used as tools to non-invasively manipulate electrical processes in target cells. In this context, ion selectivity of a channelrhodopsin is of particular importance. This article describes the investigation of chloride selectivity for a recently identified anion-conducting channelrhodopsin of Proteomonas sulcata via electrophysiological patch-clamp recordings on HEK293 cells. The experimental procedure for measuring light-gated photocurrents demands a fast switchable - ideally monochromatic - light source coupled into the microscope of an otherwise conventional patch-clamp setup. Preparative procedures prior to the experiment are outlined involving preparation of buffered solutions, considerations on liquid junction potentials, seeding and transfection of cells, and pulling of patch pipettes. The actual recording of current-voltage relations to determine the reversal potentials for different chloride concentrations takes place 24 h to 48 h after transfection. Finally, electrophysiological data are analyzed with respect to theoretical considerations of chloride conduction.


Asunto(s)
Channelrhodopsins/fisiología , Cloruros/fisiología , Fenómenos Electrofisiológicos , Células HEK293 , Humanos , Luz , Técnicas de Placa-Clamp , Transfección
13.
Methods Mol Biol ; 1408: 141-65, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26965121

RESUMEN

After the discovery of Channelrhodopsin, a light-gated ion channel, only a few people saw the diverse range of applications for such a protein. Now, more than 10 years later Channelrhodopsins have become widely accepted as the ultimate tool to control the membrane potential of excitable cells via illumination. The demand for more application-specific Channelrhodopsin variants started a race between protein engineers to design improved variants. Even though many engineered variants have undisputable advantages compared to wild-type variants, many users are alienated by the tremendous amount of new variants and their perplexing names. Here, we review new variants whose efficacy has already been proven in neurophysiological experiments, or variants which are likely to extend the optogenetic toolbox. Variants are described based on their mechanistic and operational properties in terms of expression, kinetics, ion selectivity, and wavelength responsivity.


Asunto(s)
Chlorophyta/genética , Proteínas de Plantas/genética , Ingeniería de Proteínas/métodos , Rodopsina/genética , Animales , Chlorophyta/metabolismo , Expresión Génica , Humanos , Luz , Modelos Moleculares , Optogenética/métodos , Proteínas de Plantas/metabolismo , Rodopsina/metabolismo
14.
J Biol Chem ; 291(8): 4121-7, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26740624

RESUMEN

Chloride conducting channelrhodopsins (ChloCs) are new members of the optogenetic toolbox that enable neuronal inhibition in target cells. Originally, ChloCs have been engineered from cation conducting channelrhodopsins (ChRs), and later identified in a cryptophyte alga genome. We noticed that the sequence of a previously described Proteomonas sulcata ChR (PsChR1) was highly homologous to the naturally occurring and previously reported ChloCs GtACR1/2, but was not recognized as an anion conducting channel. Based on electrophysiological measurements obtained under various ionic conditions, we concluded that the PsChR1 photocurrent at physiological conditions is strongly inward rectifying and predominantly carried by chloride. The maximum activation was noted at excitation with light of 540 nm. An initial spectroscopic characterization of purified protein revealed that the photocycle and the transport mechanism of PsChR1 differ significantly from cation conducting ChRs. Hence, we concluded that PsChR1 is an anion conducting ChR, now renamed PsACR1, with a red-shifted absorption suited for multicolor optogenetic experiments in combination with blue light absorbing cation conducting ChRs.


Asunto(s)
Canales de Cloruro/química , Criptófitas/química , Luz , Rodopsina/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Criptófitas/genética , Criptófitas/metabolismo , Transporte Iónico/fisiología , Rodopsina/genética , Rodopsina/metabolismo
15.
Proc Natl Acad Sci U S A ; 113(4): 822-9, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26699459

RESUMEN

The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near -65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼ 15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor-based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure-function relationships of the light-gated pore.


Asunto(s)
Reacción de Prevención/fisiología , Cloruros/metabolismo , Activación del Canal Iónico/fisiología , Optogenética , Rodopsina/química , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Arginina/química , Reacción de Prevención/efectos de la radiación , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/efectos de la radiación , Células Cultivadas , Dependovirus/genética , Electrochoque , Miedo , Tecnología de Fibra Óptica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Células HEK293 , Hipocampo/citología , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/efectos de la radiación , Masculino , Memoria/fisiología , Memoria/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neuronas/fisiología , Conformación Proteica , Ratas , Ratas Sprague-Dawley , Rodopsina/metabolismo , Rodopsina/efectos de la radiación , Alineación de Secuencia , Área Tegmental Ventral/fisiología
16.
Sci Rep ; 5: 14807, 2015 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-26443033

RESUMEN

Channelrhodopsins are light-gated cation channels that have been widely used for optogenetic stimulation of electrically excitable cells. Replacement of a glutamic acid in the central gate with a positively charged amino acid residue reverses the ion selectivity and produces chloride-conducting ChRs (ChloCs). Expressed in neurons, published ChloCs produced a strong shunting effect but also a small, yet significant depolarization from the resting potential. Depending on the state of the neuron, the net result of illumination might therefore be inhibitory or excitatory with respect to action potential generation. Here we report two additional amino acid substitutions that significantly shift the reversal potential of improved ChloC (iChloC) to the reversal potential of endogenous GABAA receptors. As a result, light-evoked membrane depolarization was strongly reduced and spike initiation after current injection or synaptic stimulation was reliably inhibited in iChloC-transfected neurons in vitro. In the primary visual cortex of anesthetized mice, activation of iChloC suppressed spiking activity evoked by visual stimulation. Due to its high operational light sensitivity, iChloC makes it possible to inhibit neurons in a large volume of brain tissue from a small, point-like light source.


Asunto(s)
Neuronas/fisiología , Proteínas Recombinantes/metabolismo , Potenciales de Acción , Animales , Channelrhodopsins , Cloruros/metabolismo , Células HEK293 , Humanos , Luz , Ratones , Neuronas/citología , Técnicas de Cultivo de Órganos , Mutación Puntual , Células Piramidales/fisiología , Ratas , Receptores de GABA-A/metabolismo , Proteínas Recombinantes/genética , Corteza Visual/citología , Corteza Visual/metabolismo , Ácido gamma-Aminobutírico/metabolismo
17.
Photochem Photobiol Sci ; 14(2): 270-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25373866

RESUMEN

Automation can vastly reduce the cost of experimental labor and thus facilitate high experimental throughput, but little off-the-shelf hardware for the automation of illumination experiments is commercially available. Here, we use inexpensive open-source electronics to add programmable illumination capabilities to a multimode microplate reader. We deploy this setup to characterize light-triggered phenomena in three different sensory photoreceptors. First, we study the photoactivation of Arabidopsis thaliana phytochrome B by light of different wavelengths. Second, we investigate the dark-state recovery kinetics of the Synechocystis sp. blue-light sensor Slr1694 at multiple temperatures and imidazole concentrations; while the kinetics of the W91F mutant of Slr1694 are strongly accelerated by imidazole, the wild-type protein is hardly affected. Third, we determine the light response of the Beggiatoa sp. photoactivatable adenylate cyclase bPAC in Chinese hamster ovary cells. bPAC is activated by blue light in dose-dependent manner with a half-maximal intensity of 0.58 mW cm(-2); intracellular cAMP spikes generated upon bPAC activation decay with a half time of about 5 minutes after light switch-off. Taken together, we present a setup which is easily assembled and which thus offers a facile approach to conducting illumination experiments at high throughput, reproducibility and fidelity.


Asunto(s)
Automatización de Laboratorios/instrumentación , Dispositivos Ópticos , Fotobiología/instrumentación , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Beggiatoa , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Inhibidores Enzimáticos/farmacología , Imidazoles/farmacología , Luz , Mutación , Procesos Fotoquímicos , Fitocromo B/química , Synechocystis , Temperatura
18.
Science ; 344(6182): 409-12, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24674867

RESUMEN

The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Potenciales de Acción , Animales , Sitios de Unión , Región CA1 Hipocampal/citología , Células HEK293 , Humanos , Enlace de Hidrógeno , Activación del Canal Iónico , Luz , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Técnicas de Placa-Clamp , Conformación Proteica , Ingeniería de Proteínas , Células Piramidales/metabolismo , Ratas , Proteínas Recombinantes de Fusión/química , Rodopsina/genética , Transfección
19.
Biophys J ; 105(9): 2055-63, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24209850

RESUMEN

We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pH(o) and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H(+) into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pK(a) of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pK(a) is an acceleration of the photocycle and high pump turnover at high light intensities.


Asunto(s)
Bacteriorodopsinas/metabolismo , Cianobacterias , Fenómenos Electrofisiológicos , Protones , Animales , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Electroquímica , Células HEK293 , Humanos , Cinética , Mutación
20.
FEBS Lett ; 587(16): 2572-7, 2013 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-23831067

RESUMEN

Cellular pathways involving α-synuclein (αS) seem to be causative for development of Parkinson's disease. Interactions between αS and lipid membranes appear to be important for the physiological function of the protein and influence the pathological aggregation of αS leading to the formation of amyloid plaques. Upon membrane binding the unstructured αS folds into amphipathic helices. In our work we characterized the penetration depth and probed the local environment of Trp-residues introduced along the αS sequence. We could show that while the entire helix is well embedded in the lipid bilayer, segments with a shallower penetration and supposable higher flexibility exist.


Asunto(s)
Membrana Dobles de Lípidos/química , alfa-Sinucleína/química , Acrilamida/química , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Humanos , Lípidos/química , Micelas , Datos de Secuencia Molecular , Enfermedad de Parkinson/metabolismo , Fosfatidilcolinas/química , Fosfatidilserinas/química , Unión Proteica , Estructura Terciaria de Proteína , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...