Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 103, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710694

RESUMEN

Euglena gracilis microalga has been transformed into a soft bio-microrobot with light-controlled motion and deformation that can address diverse bio-challenges, such as drug delivery, diseased cell removal, and photodynamic therapy.

2.
ACS Photonics ; 10(12): 4177-4187, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145166

RESUMEN

Cellular metabolism is a key regulator of energetics, cell growth, regeneration, and homeostasis. Spatially mapping the heterogeneity of cellular metabolic activity is of great importance for unraveling the overall cell and tissue health. In this regard, imaging the endogenous metabolic cofactors, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD), with subcellular resolution and in a noninvasive manner would be useful to determine tissue and cell viability in a clinical environment, but practical use is limited by current imaging techniques. In this paper, we demonstrate the use of phasor-based hyperspectral light-sheet (HS-LS) microscopy using a single UVA excitation wavelength as a route to mapping metabolism in three dimensions. We show that excitation solely at a UVA wavelength of 375 nm can simultaneously excite NAD(P)H and FAD autofluorescence, while their relative contributions can be readily quantified using a hardware-based spectral phasor analysis. We demonstrate the potential of our HS-LS system by capturing dynamic changes in metabolic activity during preimplantation embryo development. To validate our approach, we delineate metabolic changes during preimplantation embryo development from volumetric maps of metabolic activity. Importantly, our approach overcomes the need for multiple excitation wavelengths, two-photon imaging, or significant postprocessing of data, paving the way toward clinical translation, such as in situ, noninvasive assessment of embryo viability.

3.
Opt Express ; 31(20): 33175-33190, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859103

RESUMEN

Intracellular lasers are emerging as powerful biosensors for multiplexed tracking and precision sensing of cells and their microenvironment. This sensing capacity is enabled by quantifying their narrow-linewidth emission spectra, which is presently challenging to do at high speeds. In this work, we demonstrate rapid snapshot hyperspectral imaging of intracellular lasers. Using integral field mapping with a microlens array and a diffraction grating, we obtain images of the spatial and spectral intensity distribution from a single camera acquisition. We demonstrate widefield hyperspectral imaging over a 3 × 3 mm2 field of view and volumetric imaging over 250 × 250 × 800 µm3 (XYZ) volumes with a lateral (XY) resolution of 5 µm, axial (Z) resolution of 10 µm, and a spectral resolution of less than 0.8 nm. We evaluate the performance and outline the challenges and strengths of snapshot methods in the context of characterizing the emission from intracellular lasers. This method offers new opportunities for a diverse range of applications, including high-throughput and long-term biosensing with intracellular lasers.


Asunto(s)
Técnicas Biosensibles , Imágenes Hiperespectrales , Diagnóstico por Imagen , Rayos Láser
4.
Sci Adv ; 9(27): eadh5435, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418534

RESUMEN

The penetration depth of optical coherence tomography (OCT) reaches well beyond conventional microscopy; however, signal reduction with depth leads to rapid degradation of the signal below the noise level. The pursuit of imaging at depth has been largely approached by extinguishing multiple scattering. However, in OCT, multiple scattering substantially contributes to image formation at depth. Here, we investigate the role of multiple scattering in OCT image contrast and postulate that, in OCT, multiple scattering can enhance image contrast at depth. We introduce an original geometry that completely decouples the incident and collection fields by introducing a spatial offset between them, leading to preferential collection of multiply scattered light. A wave optics-based theoretical framework supports our experimentally demonstrated improvement in contrast. The effective signal attenuation can be reduced by more than 24 decibels. Notably, a ninefold enhancement in image contrast at depth is observed in scattering biological samples. This geometry enables a powerful capacity to dynamically tune for contrast at depth.


Asunto(s)
Microscopía , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Óptica y Fotónica , Dispersión de Radiación
5.
Light Sci Appl ; 11(1): 319, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36319636

RESUMEN

Deconvolution is a challenging inverse problem, particularly in techniques that employ complex engineered point-spread functions, such as microscopy with propagation-invariant beams. Here, we present a deep-learning method for deconvolution that, in lieu of end-to-end training with ground truths, is trained using known physics of the imaging system. Specifically, we train a generative adversarial network with images generated with the known point-spread function of the system, and combine this with unpaired experimental data that preserve perceptual content. Our method rapidly and robustly deconvolves and super-resolves microscopy images, demonstrating a two-fold improvement in image contrast to conventional deconvolution methods. In contrast to common end-to-end networks that often require 1000-10,000s paired images, our method is experimentally unsupervised and can be trained solely on a few hundred regions of interest. We demonstrate its performance on light-sheet microscopy with propagation-invariant Airy beams in oocytes, preimplantation embryos and excised brain tissue, as well as illustrate its utility for Bessel-beam LSM. This method aims to democratise learned methods for deconvolution, as it does not require data acquisition outwith the conventional imaging protocol.

6.
Opt Lett ; 46(18): 4534-4537, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34525040

RESUMEN

Optical palpation maps stress at the surface of biological tissue into 2D images. It relies on measuring surface deformation of a compliant layer, which to date has been performed with optical coherence tomography (OCT). OCT-based optical palpation holds promise for improved clinical diagnostics; however, the complexity and cost hinder broad adoption. In this Letter, we introduce coherence function-encoded optical palpation (CFE-OP) using a novel optical profilometry technique that exploits the envelope of the coherence function rather than its peak position, which is typically used to retrieve depth information. CFE-OP utilizes a Fabry-Perot laser diode (bandwidth, 2.2 nm) and a single photodiode in a Michelson interferometer to detect the position along the coherence envelope as a function of path length. This technique greatly reduces complexity and cost in comparison to the OCT-based approach. We perform CFE-OP on phantom and excised human breast tissue, demonstrating comparable mechanical contrast to OCT-based optical palpation and the capability to distinguish stiff tumor from soft benign tissue.


Asunto(s)
Palpación , Tomografía de Coherencia Óptica , Humanos , Fantasmas de Imagen
7.
Opt Express ; 29(11): 16950-16968, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34154247

RESUMEN

Phase-sensitive optical coherence tomography (OCT) is used to measure motion in a range of techniques, such as Doppler OCT and optical coherence elastography (OCE). In phase-sensitive OCT, motion is typically estimated using a model of the OCT signal derived from a single reflector. However, this approach is not representative of turbid samples, such as tissue, which exhibit speckle. In this study, for the first time, we demonstrate, through theory and experiment that speckle significantly lowers the accuracy of phase-sensitive OCT in a manner not accounted for by the OCT signal-to-noise ratio (SNR). We describe how the inaccuracy in speckle reduces phase difference sensitivity and introduce a new metric, speckle brightness, to quantify the amount of constructive interference at a given location in an OCT image. Experimental measurements show an almost three-fold degradation in sensitivity between regions of high and low speckle brightness at a constant OCT SNR. Finally, we apply these new results in compression OCE to demonstrate a ten-fold improvement in strain sensitivity, and a five-fold improvement in contrast-to-noise by incorporating independent speckle realizations. Our results show that speckle introduces a limit to the accuracy of phase-sensitive OCT and that speckle brightness should be considered to avoid erroneous interpretation of experimental data.

8.
Reprod Fertil ; 2(3): C29-C34, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35118395

RESUMEN

The success of IVF has remained stagnant for a decade. The focus of a great deal of research is to improve on the current ~30% success rate of IVF. Artificial intelligence (AI), or machines that mimic human intelligence, has been gaining traction for its potential to improve outcomes in medicine, such as cancer diagnosis from medical images. In this commentary, we discuss whether AI has the potential to improve fertility outcomes in the IVF clinic. Based on existing research, we examine the potential of adopting AI within multiple facets of an IVF cycle, including egg/sperm and embryo selection, as well as formulation of an IVF treatment regimen. We discuss both the potential benefits and concerns of the patient and clinician in adopting AI in the clinic. We outline hurdles that need to be overcome prior to implementation. We conclude that AI has an important future in improving IVF success.


Asunto(s)
Inteligencia Artificial , Fertilización In Vitro , Femenino , Humanos , Masculino , Óvulo/fisiología , Semen/fisiología , Manejo de Especímenes , Espermatozoides/fisiología
9.
Cancer Res ; 80(8): 1773-1783, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295783

RESUMEN

Inadequate margins in breast-conserving surgery (BCS) are associated with an increased likelihood of local recurrence of breast cancer. Currently, approximately 20% of BCS patients require repeat surgery due to inadequate margins at the initial operation. Implementation of an accurate, intraoperative margin assessment tool may reduce this re-excision rate. This study determined, for the first time, the diagnostic accuracy of quantitative micro-elastography (QME), an optical coherence tomography (OCT)-based elastography technique that produces images of tissue microscale elasticity, for detecting tumor within 1 mm of the margins of BCS specimens. Simultaneous OCT and QME were performed on the margins of intact, freshly excised specimens from 83 patients undergoing BCS and on dissected specimens from 7 patients undergoing mastectomy. The resulting three-dimensional images (45 × 45 × 1 mm) were coregistered with postoperative histology to determine tissue types present in each scan. Data from 12 BCS patients and the 7 mastectomy patients served to build a set of images for reader training. One hundred and fifty-four subimages (10 × 10 × 1 mm) from the remaining 71 BCS patients were included in a blinded reader study, which resulted in 69.0% sensitivity and 79.0% specificity using OCT images, versus 92.9% sensitivity and 96.4% specificity using elasticity images. The quantitative nature of QME also facilitated development of an automated reader, which resulted in 100.0% sensitivity and 97.7% specificity. These results demonstrate high accuracy of QME for detecting tumor within 1 mm of the margin and the potential for this technique to improve outcomes in BCS. SIGNIFICANCE: An optical imaging technology probes breast tissue elasticity to provide accurate assessment of tumor margin involvement in breast-conserving surgery.


Asunto(s)
Adenocarcinoma Mucinoso/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Carcinoma Ductal de Mama/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Márgenes de Escisión , Mastectomía Segmentaria/métodos , Adenocarcinoma Mucinoso/patología , Adenocarcinoma Mucinoso/cirugía , Adulto , Anciano , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/cirugía , Diagnóstico por Imagen de Elasticidad/normas , Femenino , Humanos , Mastectomía Segmentaria/normas , Persona de Mediana Edad , Reoperación , Tomografía de Coherencia Óptica
10.
Biomed Opt Express ; 11(2): 867-884, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32133228

RESUMEN

Recent studies in mechanobiology have revealed the importance of cellular and extracellular mechanical properties in regulating cellular function in normal and disease states. Although it is established that cells should be investigated in a three-dimensional (3-D) environment, most techniques available to study mechanical properties on the microscopic scale are unable to do so. In this study, for the first time, we present volumetric images of cellular and extracellular elasticity in 3-D biomaterials using quantitative micro-elastography (QME). We achieve this by developing a novel strain estimation algorithm based on 3-D linear regression to improve QME system resolution. We show that QME can reveal elevated elasticity surrounding human adipose-derived stem cells (ASCs) embedded in soft hydrogels. We observe, for the first time in 3-D, further elevation of extracellular elasticity around ASCs with overexpressed TAZ; a mechanosensitive transcription factor which regulates cell volume. Our results demonstrate that QME has the potential to study the effects of extracellular mechanical properties on cellular functions in a 3-D micro-environment.

11.
J Biophotonics ; 13(6): e201960196, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32057188

RESUMEN

Compression optical coherence elastography (OCE) typically requires a mechanical actuator to impart a controlled uniform strain to the sample. However, for handheld scanning, this adds complexity to the design of the probe and the actuator stroke limits the amount of strain that can be applied. In this work, we present a new volumetric imaging approach that utilizes bidirectional manual compression via the natural motion of the user's hand to induce strain to the sample, realizing compact, actuator-free, handheld compression OCE. In this way, we are able to demonstrate rapid acquisition of three-dimensional quantitative microelastography (QME) datasets of a tissue volume (6 × 6 × 1 mm3 ) in 3.4 seconds. We characterize the elasticity sensitivity of this freehand manual compression approach using a homogeneous silicone phantom and demonstrate comparable performance to a benchtop mounted, actuator-based approach. In addition, we demonstrate handheld volumetric manual compression-based QME on a tissue-mimicking phantom with an embedded stiff inclusion and on freshly excised human breast specimens from both mastectomy and wide local excision (WLE) surgeries. Tissue results are coregistered with postoperative histology, verifying the capability of our approach to measure the elasticity of tissue and to distinguish stiff tumor from surrounding soft benign tissue.


Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Femenino , Humanos , Mastectomía , Fantasmas de Imagen , Tomografía de Coherencia Óptica
12.
ACS Biomater Sci Eng ; 6(4): 2459-2468, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33455319

RESUMEN

Silk fibroin (SF) membranes are finding widespread use as biomaterial scaffolds in a range of tissue engineering applications. The control over SF scaffold degradation kinetics is usually driven by the proportion of SF crystalline domains in the formulation, but membranes with a high ß-sheet content are brittle and still contain amorphous domains, which are highly susceptible to enzymatic degradation. In this work, photo-cross-linking of SF using a ruthenium-based method, and with the addition of glycerol, was used to generate robust and flexible SF membranes for long-term tissue engineering applications requiring slow degradation of the scaffolds. The resulting mechanical properties, protein secondary structure, and degradation rate were investigated. In addition, the cytocompatibility and versatility of porous micropatterning of SF films were assessed. The photo-cross-linking reduced the enzymatic degradation of SF in vitro without interfering with the ß-sheet content of the SF material, while adding glycerol to the composition grants flexibility to the membranes. By combining these methods, the membrane resistance to protease degradation was significantly enhanced compared to either method alone, and the SF mechanical properties were not impaired. We hypothesize that photo-cross-linking protects the SF amorphous regions from enzymatic degradation and complements the natural protection offered by ß-sheets in the crystalline region. Overall, this approach presents broad utility in tissue engineering applications that require a long-term degradation profile and mechanical support.


Asunto(s)
Fibroínas , Materiales Biocompatibles , Porosidad , Ingeniería de Tejidos
13.
Opt Lett ; 44(20): 4981-4984, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31613244

RESUMEN

Compressive sensing can overcome the Nyquist criterion and record images with a fraction of the usual number of measurements required. However, conventional measurement bases are susceptible to diffraction and scattering, prevalent in high-resolution microscopy. In this Letter, we explore the random Morlet basis as an optimal set for compressive multiphoton imaging, based on its ability to minimize the space-frequency uncertainty. We implement this approach for wide-field multiphoton microscopy with single-pixel detection, which allows imaging through turbid media without correction. The Morlet basis promises a route for rapid acquisition with lower photodamage.

14.
Biomed Opt Express ; 10(8): 4034-4049, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31452993

RESUMEN

Optical coherence elastography (OCE) has been proposed for a range of clinical applications. However, the majority of these studies have been performed using bulky, lab-based imaging systems. A compact, handheld imaging probe would accelerate clinical translation, however, to date, this had been inhibited by the slow scan rates of compact devices and the motion artifact induced by the user's hand. In this paper, we present a proof-of-concept, handheld quantitative micro-elastography (QME) probe capable of scanning a 6 × 6 × 1 mm volume of tissue in 3.4 seconds. This handheld probe is enabled by a novel QME acquisition protocol that incorporates a custom bidirectional scan pattern driving a microelectromechanical system (MEMS) scanner, synchronized with the sample deformation induced by an annular PZT actuator. The custom scan pattern reduces the total acquisition time and the time difference between B-scans used to generate displacement maps, minimizing the impact of motion artifact. We test the feasibility of the handheld QME probe on a tissue-mimicking silicone phantom, demonstrating comparable image quality to a bench-mounted setup. In addition, we present the first handheld QME scans performed on human breast tissue specimens. For each specimen, quantitative micro-elastograms are co-registered with, and validated by, histology, demonstrating the ability to distinguish stiff cancerous tissue from surrounding soft benign tissue.

15.
Biomed Opt Express ; 10(4): 1760-1773, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31086702

RESUMEN

We present a finger-mounted quantitative micro-elastography (QME) probe, capable of measuring the elasticity of biological tissue in a format that avails of the dexterity of the human finger. Finger-mounted QME represents the first demonstration of a wearable elastography probe. The approach realizes optical coherence tomography-based elastography by focusing the optical beam into the sample via a single-mode fiber that is fused to a length of graded-index fiber. The fiber is rigidly affixed to a 3D-printed thimble that is mounted on the finger. Analogous to manual palpation, the probe compresses the tissue through the force exerted by the finger. The resulting deformation is measured using optical coherence tomography. Elasticity is estimated as the ratio of local stress at the sample surface, measured using a compliant layer, to the local strain in the sample. We describe the probe fabrication method and the signal processing developed to achieve accurate elasticity measurements in the presence of motion artifact. We demonstrate the probe's performance in motion-mode scans performed on homogeneous, bi-layer and inclusion phantoms and its ability to measure a thermally-induced increase in elasticity in ex vivo muscle tissue. In addition, we demonstrate the ability to acquire 2D images with the finger-mounted probe where lateral scanning is achieved by swiping the probe across the sample surface.

16.
Biomed Opt Express ; 10(3): 1496-1513, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30891363

RESUMEN

Optical coherence elastography (OCE) is emerging as a method to image the mechanical properties of tissue on the microscale. However, the spatial resolution, a main advantage of OCE, has not been investigated and is not trivial to evaluate. To address this, we present a framework to analyze resolution in phase-sensitive compression OCE that incorporates the three main determinants of resolution: mechanical deformation of the sample, detection of this deformation using optical coherence tomography (OCT), and signal processing to estimate local axial strain. We demonstrate for the first time, through close correspondence between experiment and simulation of structured phantoms, that resolution in compression OCE is both spatially varying and sample dependent, which we link to the discrepancies between the model of elasticity and the mechanical deformation of the sample. We demonstrate that resolution is dependent on factors such as feature size and mechanical contrast. We believe that the analysis of image formation provided by our framework can expedite the development of compression OCE.

17.
Nat Commun ; 10(1): 669, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30737391

RESUMEN

Contactless sample confinement would enable a whole host of new studies in developmental biology and neuroscience, in particular, when combined with long-term, wide-field optical imaging. To achieve this goal, we demonstrate a contactless acoustic gradient force trap for sample confinement in light sheet microscopy. Our approach allows the integration of real-time environmentally controlled experiments with wide-field low photo-toxic imaging, which we demonstrate on a variety of marine animal embryos and larvae. To illustrate the key advantages of our approach, we provide quantitative data for the dynamic response of the heartbeat of zebrafish larvae to verapamil and norepinephrine, which are known to affect cardiovascular function. Optical flow analysis allows us to explore the cardiac cycle of the zebrafish and determine the changes in contractile volume within the heart. Overcoming the restrictions of sample immobilisation and mounting can open up a broad range of studies, with real-time drug-based assays and biomechanical analyses.


Asunto(s)
Acústica , Embrión no Mamífero/diagnóstico por imagen , Imagen de Lapso de Tiempo/métodos , Animales , Biología Evolutiva , Larva , Microscopía Fluorescente , Pez Cebra
18.
Biomed Opt Express ; 10(2): 384-398, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30800487

RESUMEN

It is widely accepted that accurate mechanical properties of three-dimensional soft tissues and cellular samples are not available on the microscale. Current methods based on optical coherence elastography can measure displacements at the necessary resolution, and over the volumes required for this task. However, in converting this data to maps of elastic properties, they often impose assumptions regarding homogeneity in stress or elastic properties that are violated in most realistic scenarios. Here, we introduce novel, rigorous, and computationally efficient inverse problem techniques that do not make these assumptions, to realize quantitative volumetric elasticity imaging on the microscale. Specifically, we iteratively solve the three-dimensional elasticity inverse problem using displacement maps obtained from compression optical coherence elastography. This is made computationally feasible with adaptive mesh refinement and domain decomposition methods. By employing a transparent, compliant surface layer with known shear modulus as a reference for the measurement, absolute shear modulus values are produced within a millimeter-scale sample volume. We demonstrate the method on phantoms, on a breast cancer sample ex vivo, and on human skin in vivo. Quantitative elastography on this length scale will find wide application in cell biology, tissue engineering and medicine.

19.
J Biophotonics ; 12(1): e201800180, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30054979

RESUMEN

Accurate and effective removal of tumor in one operation is an important goal of breast-conserving surgery. However, it is not always achieved. Surgeons often utilize manual palpation to assess the surgical margin and/or the breast cavity. Manual palpation, however, is subjective and has relatively low resolution. Here, we investigate a tactile imaging technique, optical palpation, for the visualization of tumor. Optical palpation generates maps of the stress at the surface of tissue under static preload compression. Stress is evaluated by measuring the deformation of a contacting thin compliant layer with known mechanical properties using optical coherence tomography. In this study, optical palpation is performed on 34 freshly excised human breast specimens. Wide field-of-view (up to ~46 × 46 mm) stress images, optical palpograms, are presented from four representative specimens, demonstrating the capability of optical palpation to visualize tumor. Median stress reported for adipose tissue, 4 kPa, and benign dense tissue, 8 kPa, is significantly lower than for invasive tumor, 60 kPa. In addition, we demonstrate that optical palpation provides contrast consistent with a related optical technique, quantitative micro-elastography. This study demonstrates that optical palpation holds promise for visualization of tumor in breast-conserving surgery.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Imagen Óptica , Palpación/métodos , Neoplasias de la Mama/cirugía , Humanos , Procesamiento de Imagen Asistido por Computador , Mastectomía , Tomografía de Coherencia Óptica
20.
Otolaryngol Head Neck Surg ; 159(3): 424-438, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29787354

RESUMEN

Objective To evaluate the recent developments in optical coherence tomography (OCT) for tympanic membrane (TM) and middle ear (ME) imaging and to identify what further development is required for the technology to be integrated into common clinical use. Data Sources PubMed, Embase, Google Scholar, Scopus, and Web of Science. Review Methods A comprehensive literature search was performed for English language articles published from January 1966 to January 2018 with the keywords "tympanic membrane or middle ear,""optical coherence tomography," and "imaging." Conclusion Conventional imaging techniques cannot adequately resolve the microscale features of TM and ME, sometimes necessitating diagnostic exploratory surgery in challenging otologic pathology. As a high-resolution noninvasive imaging technique, OCT offers promise as a diagnostic aid for otologic conditions, such as otitis media, cholesteatoma, and conductive hearing loss. Using OCT vibrometry to image the nanoscale vibrations of the TM and ME as they conduct acoustic waves may detect the location of ossicular chain dysfunction and differentiate between stapes fixation and incus-stapes discontinuity. The capacity of OCT to image depth and thickness at high resolution allows 3-dimensional volumetric reconstruction of the ME and has potential use for reconstructive tympanoplasty planning and the follow-up of ossicular prostheses. Implications for Practice To achieve common clinical use beyond these initial discoveries, future in vivo imaging devices must feature low-cost probe or endoscopic designs and faster imaging speeds and demonstrate superior diagnostic utility to computed tomography and magnetic resonance imaging. While such technology has been available for OCT, its translation requires focused development through a close collaboration between engineers and clinicians.


Asunto(s)
Otitis Media/cirugía , Tomografía de Coherencia Óptica/métodos , Membrana Timpánica/diagnóstico por imagen , Membrana Timpánica/patología , Oído Medio/diagnóstico por imagen , Oído Medio/patología , Diseño de Equipo , Seguridad de Equipos , Femenino , Predicción , Humanos , Masculino , Otitis Media/diagnóstico por imagen , Otitis Media/patología , Otoscopía/métodos , Cuidados Preoperatorios/métodos , Tomografía de Coherencia Óptica/tendencias , Timpanoplastia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...