Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Polym Au ; 4(2): 149-156, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38618001

RESUMEN

The association of ionizable polymers strongly affects their motion in solutions, where the constraints arising from clustering of the ionizable groups alter the macroscopic dynamics. The interrelation between the motion on multiple length and time scales is fundamental to a broad range of complex fluids including physical networks, gels, and polymer-nanoparticle complexes where long-lived associations control their structure and dynamics. Using neutron spin echo and fully atomistic, multimillion atom molecular dynamics (MD) simulations carried out to times comparable to that of chain segmental motion, the current study resolves the dynamics of networks formed by suflonated polystryene solutions for sulfonation fractions 0 ≤ f ≤ 0.09 across time and length scales. The experimental dynamic structure factors were measured and compared with computational ones, calculated from MD simulations, and analyzed in terms of a sum of two exponential functions, providing two distinctive time scales. These time constants capture confined motion of the network and fast dynamics of the highly solvated segments. A unique relationship between the polymer dynamics and the size and distribution of the ionic clusters was established and correlated with the number of polymer chains that participate in each cluster. The correlation of dynamics in associative complex fluids across time and length scales, enabled by combining the understanding attained from reciprocal space through neutron spin echo and real space, through large scale MD studies, addresses a fundamental long-standing challenge that underline the behavior of soft materials and affect their potential uses.

2.
Phys Rev E ; 109(3-1): 034501, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632780

RESUMEN

Physical networks formed by ionizable polymers with ionic clusters as crosslinks are controlled by coupled dynamics that transcend from ionic clusters through chain motion to macroscopic response. Here, the coupled dynamics, across length scales, from the ionic clusters to the networks in toluene swollen polystyrene sulfonate networks, were directly correlated, as the electrostatic environment of the physical crosslinks was altered. The multiscale insight is attained by coupling neutron spin echo measurements with molecular dynamics simulations, carried out to times typical of relaxation of polymers in solutions. The experimental dynamic structure factor is in outstanding agreement with the one calculated from computer simulations, as the networks are perturbed by elevating the temperature and changing the electrostatic environment. In toluene, the long-lived clusters remain stable over hundreds of ns across a broad temperature range, while the polymer network remains dynamic. Though the size of the clusters changes as the dielectric constant of the solvent is modified through the addition of ethanol, they remain stable but morph, enhancing the polymer chain dynamics.

3.
ACS Macro Lett ; 12(8): 1118-1124, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37493602

RESUMEN

Ionizable groups tethered to polymers enable their many current and potential applications. However, these functionalities drive the formation of physical networks through clustering of the ionic groups, resulting in constrained dynamics of the macromolecules. Understanding the molecular origin of this hindrance remains a critical fundamental question, whose solution will directly impact the processing of ionizable polymers from molecules to viable materials. Here, using quasielastic neutron scattering accompanied by molecular dynamics simulations, segmental dynamics of slightly sulfonated polystyrene is studied in solutions as the cohesion of the ionic assemblies is tuned. We find that in cyclohexane the ionic assemblies act as centers of confinement, affecting dynamics both on macroscopic lengths and in the vicinity of the ionic assemblies. Addition of a small amount of ethanol affects the packing of the ionizable groups within the assemblies, which in turn enhances the chain dynamics.

4.
RSC Adv ; 13(28): 19227-19234, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37377875

RESUMEN

Soft nanoparticles (NPs) are emerging candidates for nano medicine, particularly for intercellular imaging and targeted drug delivery. Their soft nature, manifested in their dynamics, allows translocation into organisms without damaging their membranes. A crucial step towards incorporating soft dynamic NPs in nano medicine, is to resolve their interrelation with membranes. Here using atomistic molecular dynamics (MD) simulations we probe the interaction of soft NPs formed by conjugated polymers with a model membrane. These NPs, often termed polydots, are confined to their nano dimensions without any chemical tethers, forming dynamic long lived nano structures. Specifically, polydots formed by dialkyl para poly phenylene ethylene (PPE), with a varying number of carboxylate groups tethered to the alkyl chains to tune the interfacial charge of the surface of the NP are investigated at the interface with a model membrane that consists of di-palmitoyl phosphatidylcholine (DPPC). We find that even though polydots are controlled only by physical forces, they retain their NP configuration as they transcend the membrane. Regardless of their size, neutral polydots spontaneously penetrate the membrane whereas carboxylated polydots must be driven in, with a force that depends on the charge at their interface, all without significant disruption to the membrane. These fundamental results provide a means to control the position of the nanoparticles with respect to the membrane interfaces, which is key to their therapeutic use.

5.
J Phys Chem B ; 124(34): 7494-7499, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32790408

RESUMEN

Metallic surfaces that are in contact with solutions are commonly used in numerous applications where these surfaces can be damaged by shock wave induced bubble collapse. Use of polymer films that coat such surfaces to prevent them from damage requires a better understanding of how much harm collapsing bubbles produce in the films. In this study, we report the results from coarse-grained molecular dynamics simulations to study the damage to polystyrene (PS) films coating a hard surface. The damage was caused by a collapsing nanobubble located in the proximity of the film and interacting with an impinging shock wave. This collapse produces a high-speed water jet that impacts the PS film with a greater force than the shock front and creates cavities/pits in the PS film. We observed that polymer molecules located in the jet vicinity undergo conformational extension in the direction perpendicular to the jet motion, while chain molecules in the rest of the film undergo compression. We also observed that damage to the film is sensitive to the strength of the shock wave.

6.
J Phys Chem Lett ; 10(21): 6621-6625, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31609628

RESUMEN

We performed molecular dynamics simulations on systems containing stretched water and a C60 buckyball molecule. Our goals were to understand how the presence of the hydrophobic impurity influences the rate of cavitation in stretched water and how the change in pressure (an increase in the value of negative pressure) affects the nature of hydrophobic hydration. Our simulations show that the presence of a buckyball increases the rate of cavitation in water under negative pressure. When studying the influence of the degree of stretching on hydration, we observed that at pressures above -100 MPa the mechanism of hydrophobic hydration is the one that characterizes hydration of a small particle. At some pressure below -100 MPa, there is a crossover in the mechanism of hydration where dewetting occurs by forming cavities next to the surface of the buckyball, and this is characteristic of hydrophobic hydration of large particles.

7.
J Chem Phys ; 149(8): 084903, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30193469

RESUMEN

The temperature response of luminescent ionizable polymers confined into far from equilibrium nanoparticles without chemical links was studied using molecular dynamics simulations. These nanoparticles, often referred to as polydots, are emerging as a promising tool for nanomedicine. Incorporating ionizable groups into these polymers enables biofunctionality; however, they also affect the delicate balance of interactions that hold these nanoparticles together. Here polydots formed by a model polymer dialkyl p-phenylene ethynylene with varying number of carboxylate groups along the polymer backbone were probed. We find that increasing temperature affects neutral and charged polydots differently, where neutral polydots exhibit a transition above which their structure becomes dynamic and they unravel. The dependence of the transition temperature on the surface to volume ratio of these polydots is much stronger than what has previously been observed in polymeric thin films. Charged polydots become dynamic enabling migration of the ionizable groups toward the particle interface, while retaining the overall particle shape.

8.
J Chem Phys ; 146(24): 244907, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28668043

RESUMEN

Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. We find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA