Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Vet Res Commun ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709372

RESUMEN

Pasteurella multocida is affecting a multitude of animals and severely affects livestock production. Existing vaccines are mostly chemically inactivated and do not lead to wide protection. Irradiated vaccines are enjoying a renaissance and the concept of "replication defficient but metabolically active" vaccines was recently evaluated in several vaccine trials. P. multocida was isolated from the nasal swab, blood, and lung swab samples from infected rabbits. Gamma irradiation of P. multocida for inhibition of replication was evaluated at an optimized irradiation dose of 10 Kgy established. Four groups of rabbits were (mock) vaccinated with a commercial P. multocida vaccine and three irradiated formulations as liquid, lyophilized formulations with added Trehalose and lyophilized-Trehalose with an "activation" culturing the irradiated bacteria for 24 in broth. Evaluation of humoral immune response by ELISA showed that all three irradiated vaccines produced an effective, protective, and continued IgG serum level after vaccination and bacterial challenge. The IFN-γ expression is maintained at a normal level, within each individual group however, the lyophilized trehalose irradiated vaccine showed peak mean of IFN-γ titer at one week after booster dose (day 21) which was statistically significant. Cumulatively, the results of this study show that gamma-irradiated P. multocida vaccines are safe and protect rabbits against disease. Moreover, Rabbits' immunization with the three irradiated formulations avoided adverse side effects as compared to commercial polyvalent vaccine, the body weight gain for the irradiated vaccine groups indicates less stress compared to the commercial polyvalent vaccine.

2.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338687

RESUMEN

Gastrointestinal parasitic nematode (GIN) infections are the cause of severe losses to farmers in countries where small ruminants such as sheep and goat are the mainstay of livestock holdings. There is a need to develop effective and easy-to-administer anti-parasite vaccines in areas where anthelmintic resistance is rapidly rising due to the inefficient use of drugs currently available. In this review, we describe the most prevalent and economically significant group of GIN infections that infect small ruminants and the immune responses that occur in the host during infection with an emphasis on mucosal immunity. Furthermore, we outline the different prevention strategies that exist with a focus on whole and purified native parasite antigens as vaccine candidates and their possible oral-nasal administration as a part of an integrated parasite control toolbox in areas where drug resistance is on the rise.


Asunto(s)
Antihelmínticos , Enfermedades Transmisibles , Enfermedades Gastrointestinales , Nematodos , Infecciones por Nematodos , Enfermedades de las Ovejas , Animales , Ovinos , Inmunidad Mucosa , Rumiantes , Infecciones por Nematodos/prevención & control , Infecciones por Nematodos/veterinaria , Enfermedades Gastrointestinales/tratamiento farmacológico , Cabras , Enfermedades Transmisibles/tratamiento farmacológico , Antihelmínticos/farmacología , Enfermedades de las Ovejas/prevención & control
3.
Vet Res Commun ; 48(1): 245-257, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37642819

RESUMEN

Exposure to gamma rays from cobalt 60 (Co60) can induce a complete inactivation of Mannheimia haemolytica. The inactivated bacterial pathogen is a potential vaccine candidate for immunization of ruminants such as sheep. The subcutaneous administration of irradiated vaccine in a two-dose regimen (4.0 × 109 colony forming unit (CFU) per dose) results in no mortality in any of the vaccinated sheep during immunization and after subsequent challenge of the live bacteria of the same strain of M. haemolytica. A significant rise in serum IgG titer, detected through ELISA, is observed after the passage of two weeks from the inoculation of the first dose whereas, the peak of the mean serum antibody titer occurred after two weeks of booster dose. The vaccination does not bring significant change to the IFN-γ levels in serum. The bacterial challenge of the vaccinated sheep does not induce a further seroconversion relative to serum antibody titer. In conclusion, the vaccinated sheep are protected by the elevated IgG titer and increased levels of IL-4 (Th-2 response) compared to the non-vaccinated sheep. Radiation technology can provide the opportunity for mass production of immunologically safe vaccines against animal and zoonotic diseases. Ethics Approval by the National Research Center Ethics Committee (Trial Registration Number (TRN) no 13,602,023, 13/5/2023) was obtained.


Asunto(s)
Mannheimia haemolytica , Enfermedades de las Ovejas , Animales , Ovinos , Rayos gamma , Vacunas Bacterianas , Vacunación/veterinaria , Inmunoglobulina G , Enfermedades de las Ovejas/prevención & control , Enfermedades de las Ovejas/microbiología
4.
Front Immunol ; 14: 1185232, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261344

RESUMEN

The present study investigated the expression of cytokines and cellular changes in chickens following vaccination with irradiated avian pathogenic Escherichia coli (APEC) and/or challenge. Four groups of 11-week-old pullets, each consisting of 16 birds were kept separately in isolators before they were sham inoculated (N), challenged only (C), vaccinated (V) or vaccinated and challenged (V+C). Vaccination was performed using irradiated APEC applied via aerosol. For challenge, the homologous strain was administered intratracheally. Birds were sacrificed on 3, 7, 14 and 21 days post challenge (dpc) to examine lesions, organ to body weight ratios and bacterial colonization. Lung and spleen were sampled for investigating gene expression of cytokines mediating inflammation by RT-qPCR and changes in the phenotype of subsets of mononuclear cells by flow cytometry. After re-stimulation of immune cells by co-cultivation with the pathogen, APEC-specific IFN-γ producing cells were determined. Challenged only birds showed more severe pathological and histopathological lesions, a higher probability of bacterial re-isolation and higher organ to body weight ratios compared to vaccinated and challenged birds. In the lung, an upregulation of IL-1ß and IL-6 following vaccination and/or challenge at 3 dpc was observed, whereas in the spleen IL-1ß was elevated. Changes were observed in macrophages and TCR-γδ+ cells within 7 dpc in spleen and lung of challenged birds. Furthermore, an increase of CD4+ cells in spleen and a rise of Bu-1+ cells in lung were present in vaccinated and challenged birds at 3 dpc. APEC re-stimulated lung and spleen mononuclear cells from only challenged pullets showed a significant increase of IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. Vaccinated and challenged chickens responded with a significant increase of IFN-γ+CD8α+ T cells in the lung and IFN-γ+TCR-γδ+ cells in the spleen. Re-stimulation of lung mononuclear cells from vaccinated birds resulted in a significant increase of both IFN-γ+CD8α+ and IFN-γ+TCR-γδ+ cells. In conclusion, vaccination with irradiated APEC caused enhanced pro-inflammatory response as well as the production of APEC-specific IFN-γ-producing γδ and CD8α T cells, which underlines the immunostimulatory effect of the vaccine in the lung. Hence, our study provides insights into the underlying immune mechanisms that account for the defense against APEC.


Asunto(s)
Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Animales , Pollos , Femenino , Vacunas contra Escherichia coli/administración & dosificación , Vacunas contra Escherichia coli/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Aerosoles
5.
J Vis Exp ; (195)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37318241

RESUMEN

Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) within the immune system. They patrol the organism looking for pathogens and play a unique role within the immune system by linking the innate and adaptive immune responses. These cells can phagocytize and then present captured antigens to effector immune cells, triggering a diverse range of immune responses. This paper demonstrates a standardized method for the in vitro generation of bovine monocyte-derived dendritic cells (MoDCs) isolated from cattle peripheral blood mononuclear cells (PBMCs) and their application in evaluating vaccine immunogenicity. Magnetic-based cell sorting was used to isolate CD14+ monocytes from PBMCs, and the supplementation of complete culture medium with interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) was used to induce the differentiation of CD14+ monocytes into naive MoDCs. The generation of immature MoDCs was confirmed by detecting the expression of major histocompatibility complex II (MHC II), CD86, and CD40 cell surface markers. A commercially available rabies vaccine was used to pulse the immature MoDCs, which were subsequently co-cultured with naive lymphocytes. The flow cytometry analysis of the antigen-pulsed MoDCs and lymphocyte co-culture revealed the stimulation of T lymphocyte proliferation through the expression of Ki-67, CD25, CD4, and CD8 markers. The analysis of the mRNA expression of IFN-γ and Ki-67, using quantitative PCR, showed that the MoDCs could induce the antigen-specific priming of lymphocytes in this in vitro co-culture system. Furthermore, IFN-γ secretion assessed using ELISA showed a significantly higher titer (**p < 0.01) in the rabies vaccine-pulsed MoDC-lymphocyte co-culture than in the non-antigen-pulsed MoDC-lymphocyte co-culture. These results show the validity of this in vitro MoDC assay to measure vaccine immunogenicity, meaning this assay can be used to identify potential vaccine candidates for cattle before proceeding with in vivo trials, as well as in vaccine immunogenicity assessments of commercial vaccines.


Asunto(s)
Monocitos , Vacunas Antirrábicas , Bovinos , Animales , Leucocitos Mononucleares , Células Dendríticas , Antígeno Ki-67/metabolismo , Inmunogenicidad Vacunal , Antígenos/metabolismo , Diferenciación Celular , Células Cultivadas
6.
Vaccine ; 41(7): 1342-1353, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36642629

RESUMEN

Escherichia coli causes colibacillosis in chickens, which has severe economic and public health consequences. For the first time, we investigated the efficacy of gamma-irradiated E. coli to prevent colibacillosis in chickens considering different strains and application routes. Electron microscopy, alamarBlue assay and matrix assisted laser desorption/ionization time-of- flight mass spectrometry showed that the cellular structure, metabolic activity and protein profiles of irradiated and non-treated E. coli PA14/17480/5-ovary (serotype O1:K1) were similar. Subsequently, three animal trials were performed using the irradiated E. coli and clinical signs, pathological lesions and bacterial colonization in systemic organs were assessed. In the first animal trial, the irradiated E. coli PA14/17480/5-ovary administered at 7 and 21 days of age via aerosol and oculonasal routes, respectively, prevented the occurrence of lesions and systemic bacterial spread after homologous challenge, as efficient as live infection or formalin-killed cells. In the second trial, a single aerosol application of the same irradiated strain in one-day old chickens was efficacious against challenges with a homologous or a heterologous strain (undefined serotype). The aerosol application elicited better protection as compared to oculonasal route. Finally, in the third trial, efficacy against E. coli PA15/19103-3 (serotype O78:K80) was shown. Additionally, previous results of homologous protection were reconfirmed. The irradiated PA15/19103-3 strain, which also showed lower metabolic activity, was less preferred even for the homologous protection, underlining the importance of the vaccine strain. In all the trials, the irradiated E. coli did not provoke antibody response indicating the importance of innate or cell mediated immunity for protection. In conclusion, this proof-of-concept study showed that the non-adjuvanted single aerosol application of irradiated "killed but metabolically active" E. coli provided promising results to prevent colibacillosis in chickens at an early stage of life. The findings open new avenues for vaccine production with E. coli in chickens using irradiation technology.


Asunto(s)
Infecciones por Escherichia coli , Enfermedades de las Aves de Corral , Animales , Escherichia coli , Pollos , Serogrupo , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria
7.
Front Vet Sci ; 9: 907369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903140

RESUMEN

Gamma (γ)-radiation can target viral genome replication and preserve viral structural proteins compared to formalin inactivation. Thus, a stronger immunity could be induced after the inoculation of the irradiated virus. In this study, γ-irradiated low-pathogenic avian influenza virus-H9N2 (LPAIV-H9N2) was used to immunize the broiler chicken in two formulations, including γ-irradiated LPAIV-H9N2 with 20% Trehalose intranasally (IVT.IN) or γ-irradiated LPAIV-H9N2 plus Montanide oil adjuvant ISA70 subcutaneously (IV+ISA.SC) in comparison with formalin-inactivated LPAIV-H9N2 vaccine intranasally (FV.IN) or formalin-inactivated LPAIV-H9N2 plus ISA70 subcutaneously (FV+ISA.SC). Two vaccination regimes were employed; the first one was primed on day 1 and boosted on day 15 (early regime), and the second one was primed on day 11 and boosted on day 25 (late regime). A challenge test was performed with a live homologous subtype virus. Virus shedding was monitored by quantifying the viral load via RT-qPCR on tracheal and cloacal swabs. Hemagglutination inhibition (HI) antibody titration and stimulation index (SI) of the splenic lymphocyte proliferation were measured, respectively, by HI test and Cell Proliferation assay. Cytokine assay was conducted by the RT-qPCR on antigen-stimulated spleen cells. The results of the HI test showed significant increases in antibody titer in all vaccinated groups, but it was more evident in the IVT late vaccination regime, reaching 5.33 log2. The proliferation of stimulated spleen lymphocytes was upregulated more in the IVT.IN vaccine compared to other vaccines. The mRNA transcription levels of T-helper type 1 cytokines such as interferon-gamma (IFN-γ) and interleukin 2 (IL-2) were upregulated in all vaccinated groups at the late regime. Moreover, IL-6, a pro-inflammatory cytokine was upregulated as well. However, upregulation was more noticeable in the early vaccination than the late vaccination (p< 0.05). After the challenge, the monitoring of virus shedding for the H9 gene represented an extremely low viral load. The body weight loss was not significant (p > 0.05) among the vaccinated groups. In addition, the viral load of <100.5 TCID50/ml in the vaccinated chicken indicated the protective response for all the vaccines. Accordingly, the IVT vaccine is a good candidate for the immunization of broiler chicken via the intranasal route at late regime.

8.
Front Vet Sci ; 9: 916108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898545

RESUMEN

H9N2 viruses have become, over the last 20 years, one of the most diffused poultry pathogens and have reached a level of endemicity in several countries. Attempts to control the spread and reduce the circulation of H9N2 have relied mainly on vaccination in endemic countries. However, the high level of adaptation to poultry, testified by low minimum infectious doses, replication to high titers, and high transmissibility, has severely hampered the results of vaccination campaigns. Commercially available vaccines have demonstrated high efficacy in protecting against clinical disease, but variable results have also been observed in reducing the level of replication and viral shedding in domestic poultry species. Antigenic drift and increased chances of zoonotic infections are the results of incomplete protection offered by the currently available vaccines, of which the vast majority are based on formalin-inactivated whole virus antigens. In our work, we evaluated experimental vaccines based on an H9N2 virus, inactivated by irradiation treatment, in reducing viral shedding upon different challenge doses and compared their efficacy with formalin-inactivated vaccines. Moreover, we evaluated mucosal delivery of inactivated antigens as an alternative route to subcutaneous and intramuscular vaccination. The results showed complete protection and prevention of replication in subcutaneously vaccinated Specific Pathogen Free White Leghorn chickens at low-to-intermediate challenge doses but a limited reduction of shedding at a high challenge dose. Mucosally vaccinated chickens showed a more variable response to experimental infection at all tested challenge doses and the main effect of vaccination attained the reduction of infected birds in the early phase of infection. Concerning mucosal vaccination, the irradiated vaccine was the only one affording complete protection from infection at the lowest challenge dose. Vaccine formulations based on H9N2 inactivated by irradiation demonstrated a potential for better performances than vaccines based on the formalin-inactivated antigen in terms of reduction of shedding and prevention of infection.

9.
Front Vet Sci ; 9: 859124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664846

RESUMEN

In the recent years, safety concerns regarding the administration of probiotics led to an increased interest in developing inactivated probiotics, also called "paraprobiotics". Gamma irradiation represents a promising tool that can be used to produce safe paraprobiotics by inhibiting replication while preserving the structure, the metabolic activity, and the immunogenicity of bacteria. In this study, we evaluated the ability of four strains of lactic acid bacteria (LAB: Lacticaseibacillus casei, Lactobacillus acidophilus, Lactiplantibacillus plantarum, and Lacticaseibacillus paracasei) in preserving the metabolic activity and the immune modulation of swine porcine peripheral blood mononuclear cells, after gamma irradiation or heat inactivation. Our results show that all four strains retained the metabolic activity following gamma irradiation but not after heat inactivation. In terms of immune-modulatory capacity, irradiated L. acidophilus and Lc. paracasei were able to maintain an overall gene expression pattern similar to their live state, as heat inactivation did with Lc. casei. Moreover, we show that the two inactivation methods applied to the same strain can induce an opposed expression of key genes involved in pro-inflammatory response (e.g., IFNα and interleukin-6 for Lc. casei), whereas gamma irradiation of L. acidophilus and Lc. paracasei was able to induce a downregulation of the anti-inflammatory TGFß. Taken together, our data show that immune modulation can be impacted not only by different inactivation methods but also by the strain of LAB selected. This study highlights that gamma irradiation harbors the potential to produce safe non-replicative metabolically active LAB and identifies immunomodulatory capacities that may be applied as vaccine adjuvants.

10.
Front Immunol ; 13: 832264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558083

RESUMEN

African swine fever (ASF) is among the most devastating viral diseases of pigs and wild boar worldwide. In recent years, the disease has spread alarmingly. Despite intensive research activities, a commercialized vaccine is still not available, and efficacious live attenuated vaccine candidates raise safety concerns. From a safety perspective, inactivated preparations would be most favourable. However, both historical and more recent trials with chemical inactivation did not show an appreciable protective effect. Under the assumption that the integrity of viral particles could enhance presentation of antigens, we used gamma irradiation for inactivation. To this means, gamma irradiated ASFV "Estonia 2014" was adjuvanted with either Polygen™ or Montanide™ ISA 201 VG, respectively. Subsequently, five weaner pigs per preparation were immunized twice with a three-week interval. Six weeks after the first immunization, all animals were challenged with the highly virulent ASFV strain "Armenia 2008". Although ASFV p72-specific IgG antibodies were detectable in all vaccinated animals prior challenge, no protection could be observed. All animals developed an acute lethal course of ASF and had to be euthanized at a moderate humane endpoint within six days. Indeed, the vaccinated pigs showed even higher clinical scores and a higher inner body temperature than the control group. However, significantly lower viral loads were detectable in spleen and liver of immunized animals at the time point of euthanasia. This phenomenon suggests an immune mediated disease enhancement that needs further investigation.


Asunto(s)
Fiebre Porcina Africana , Vacunas Virales , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana , Animales , Rayos gamma , Inmunogenicidad Vacunal , Porcinos , Vacunación , Vacunas Atenuadas/inmunología , Proteínas Virales , Vacunas Virales/inmunología
11.
Front Immunol ; 13: 852091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634275

RESUMEN

The protozoan parasite Trypanosoma evansi is responsible for causing surra in a variety of mammalian hosts and is spread by many vectors over a wide geographical area making it an ideal target for irradiation as a tool to study the initial events that occur during infection. Parasites irradiated at the representative doses 100Gy, 140Gy, and 200Gy were used to inoculate BALB/c mice revealing that parasites irradiated at 200Gy were unable to establish disease in all mice. Cytokine analysis of mice inoculated with 200Gy of irradiated parasites showed significantly lower levels of interleukins when compared to mice inoculated with non-irradiated and 100Gy irradiated parasites. Irradiation also differentially affected the abundance of gene transcripts in a dose-dependent trend measured at 6- and 20-hours post-irradiation with 234, 325, and 484 gene transcripts affected 6 hours post-irradiation for 100Gy-, 140Gy- and 200Gy-irradiated parasites, respectively. At 20 hours post-irradiation, 422, 381, and 457 gene transcripts were affected by irradiation at 100Gy, 140Gy, and 200Gy, respectively. A gene ontology (GO) term analysis was carried out for the three representative doses at 6 hours and 20 hours post-irradiation revealing different processes occurring at 20 hours when compared to 6 hours for 100Gy irradiation. The top ten most significant processes had a negative Z score. These processes fall in significance at 140Gy and even further at 200Gy, revealing that they were least likely to occur at 200Gy, and thus may have been responsible for infection in mice by 100Gy and 140Gy irradiated parasites. When looking at 100Gy irradiated parasites 20 hours post-irradiation processes with a positive Z score, we identified genes that were involved in multiple processes and compared their fold change values at 6 hours and 20 hours. We present these genes as possibly necessary for repair from irradiation damage at 6 hours and suggestive of being involved in the establishment of disease in mice at 20 hours post-irradiation. A potential strategy using this information to develop a whole parasite vaccine is also postulated.


Asunto(s)
Parásitos , Trypanosoma , Animales , Rayos gamma/efectos adversos , Mamíferos , Ratones , Ratones Endogámicos BALB C , Trypanosoma/genética
12.
Dev Comp Immunol ; 133: 104408, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35390358

RESUMEN

Avian pathogenic Escherichia coli (APEC) causes colibacillosis with different clinical manifestations. The disease is associated with compromised animal welfare and results in substantial economic losses in poultry production worldwide. So far, immunological mechanisms of protection against colibacillosis are not comprehensively resolved. Therefore, the present study aimed to use an ex vivo model applying chicken mononuclear cells stimulated by live and inactivated APEC. For this purpose, an 8-color flow cytometry panel was set up to target viable chicken immune cells including CD45+, CD8α+, CD4+, TCR-γδ+, Bu-1+ cells and monocytes/macrophages along with the cytokines interferon gamma (IFN-γ) or interleukin 17A (IL-17A). The 8-color flow cytometry panel was applied to investigate the effect of live and two different types of inactivated APEC (formalin-killed APEC and irradiated APEC) on the cellular immune response. For that, mononuclear cells from spleen, lung and blood of 10-week-old specific pathogen-free layer birds were isolated and stimulated with live, irradiated or killed APEC. Intracellular cytokine staining and RT-qPCR assays were applied for the detection of IFN-γ and IL-17A protein level, as well as at mRNA level for spleenocytes. Ex vivo stimulation of isolated splenocytes, lung and peripheral blood mononuclear cells (PBMCs) from chickens with live, irradiated or killed APEC showed an increasing number of IFN-γ and IL-17A producing cells at protein and mRNA level. Phenotyping of the cells from blood and organs revealed that IFN-γ and IL-17A were mainly produced by CD8α+, TCR-γδ+ T cells as well as CD4+ T cells following stimulation with APEC. Expression level of cytokines were very similar following stimulation with live and irradiated APEC but lower when killed APEC were applied. Consequently, in the present study, an ex vivo model using mononuclear cells of chickens was applied to investigate the cellular immune response against APEC. The results suggest the relevance of IFN-γ and IL-17A production in different immune cells following APEC infection in chickens which needs to be further investigated in APEC primed birds.


Asunto(s)
Infecciones por Escherichia coli , Enfermedades de las Aves de Corral , Animales , Pollos , Citocinas/metabolismo , Escherichia coli , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Leucocitos Mononucleares/metabolismo , ARN Mensajero/genética , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/metabolismo
13.
Vaccine ; 40(10): 1448-1457, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131134

RESUMEN

The generation of DCs with augmented functions is a strategy for obtaining satisfactory clinical outcomes in tumor immunotherapy. We developed a novel synthetic adjuvant comprising a liposome conjugated with a DC-targeting Toll-like-receptor ligand and a pH-sensitive polymer for augmenting cross-presentation. In an in vitro study using mouse DCs, these liposomes were selectively incorporated into DCs, significantly enhanced DC function and activated immune responses to present an epitope of the incorporated antigen on the major histocompatibility complex class I molecules. Immunization of mice with liposomes encapsulating a tumor antigen significantly enhanced antigen-specific cytotoxicity. In tumor-bearing mice, vaccination with liposomes encapsulating a tumor antigen elicited complete tumor remission. Furthermore, vaccination significantly enhanced cytotoxicity, targeting not only the vaccinated antigen but also the other antigens of the tumor cell. These results indicate that liposomes are an ideal adjuvant to develop DCs with considerably high potential to elicit antigen-specific immune responses; they are a promising tool for cancer therapy with neoantigen vaccination.


Asunto(s)
Liposomas , Polímeros , Animales , Antígenos de Neoplasias , Células Dendríticas , Concentración de Iones de Hidrógeno , Inmunoterapia/métodos , Ligandos , Ratones , Ratones Endogámicos C57BL
14.
Vet Med Sci ; 8(2): 626-634, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34878724

RESUMEN

BACKGROUND: Avian influenza virus (AIV) subtype H9N2 is a low pathogenic avian influenza virus (LPAIV). OBJECTIVE: This study aims to evaluate the humoral and cellular immunity in vaccinated mice and broiler chicken by irradiated AIV antigen plus carboxymethyl chitosan bounded iron oxide nanoparticles (CMC-IO NPs) as an adjuvant. METHODS: AIV subtype H9N2 with 108.5 EID50 /ml and haemagglutinin antigen assay about 10 log2 was irradiated by 30 kGy gamma radiation dose. Then, the gamma-irradiated AIV was used as an inactivated vaccine and conjugated with CMC-IO NPs to improve immune responses on mice. IO NPs must be applied in all activated tests using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), and then functionalized by CMC as IO-CMC. Fourier transform infrared (FTIR) spectra on functionalized IO-CMC showed a peak of 638 cm-1 which is a band between metal and O (Fe-O). RESULTS: Based on the comparison between the two X-ray diffraction (XRD) patterns on Fe2 O3 -NPs and IO-CMC, the characteristics of IO-NPs did not change after carboxymethylation. A CHN Analyzer was applied to measure the molecular weight of IO-CMC that was calculated as 1045 g. IO-CMC, irradiated AIV-IO-CMC and formalin AIV-IO-CMC were injected into 42 BALB/c mice in six groups. The fourth group was the negative control, and the fifth and sixth groups were inoculated by irradiated AIV-ISA70 and formalin AIV-ISA70 vaccines. An increase in haemagglutination inhibition (HI) antibody titration was observed in the irradiated AIV-IO-CMC and formalin AIV-IO-CMC groups (p < 0.05). In addition, increases in the lymphoproliferative activity of re-stimulated splenic lymphocytes, interfron-γ (IFN-γ) and interleukin-2 (IL-2) concentration in the irradiated AIV-IO-CMC group demonstrated the activation of Type 1 helper cells. The concentration of IL-4 was without any significant increases in non-group. CONCLUSIONS: Accordingly, Th2 activation represented no increase. Finally, the finding showed that AIV-IO-CMC was effective on enhancing immunogenicity as irradiated AIV antigen administered with a clinically acceptable adjuvant (i.e. IO-CMC).


Asunto(s)
Quitosano , Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Enfermedades de los Roedores , Animales , Antígenos Virales , Pollos , Formaldehído , Rayos gamma , Nanopartículas Magnéticas de Óxido de Hierro , Ratones
16.
Front Immunol ; 12: 768820, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917086

RESUMEN

Fowl cholera (FC) caused by Pasteurella multocida is among the serious infectious diseases of poultry. Currently, formalin inactivated FC (FI-FC) vaccine is widely used in Ethiopia. However, reports of the disease complaint remain higher despite the use of the vaccine. The aim of this study was to develop and evaluate gamma-irradiated mucosal FC vaccines that can be used nationally. In a vaccination-challenge experiment, the performance of gamma-irradiated P. multocida (at 1 kGy) formulated with Montanide gel/01 PR adjuvant was evaluated at different dose rates (0.5 and 0.3 ml) and routes (intranasal, intraocular, and oral), in comparison with FI-FC vaccine in chicken. Chickens received three doses of the candidate vaccine at 3-week intervals. Sera, and trachea and crop lavage were collected to assess the antibody levels using indirect and sandwich ELISAs, respectively. Challenge exposure was conducted by inoculation at 3.5×109 CFU/ml of P. multocida biotype A intranasally 2 weeks after the last immunization. Repeated measures ANOVA test and Kaplan Meier curve analysis were used to examine for statistical significance of antibody titers and survival analysis, respectively. Sera IgG and secretory IgA titers were significantly raised after second immunization (p=0.0001). Chicken survival analysis showed that intranasal and intraocular administration of the candidate vaccine at the dose of 0.3 ml resulted in 100% protection as compared to intramuscular injection of FI-FC vaccine, which conferred 85% protection (p=0.002). In conclusion, the results of this study showed that gamma-irradiated FC mucosal vaccine is safe and protective, indicating its potential use for immunization of chicken against FC.


Asunto(s)
Vacunas Bacterianas/inmunología , Infecciones por Pasteurella/veterinaria , Pasteurella multocida/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunación/veterinaria , Animales , Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/efectos adversos , Pollos , Rayos gamma , Infecciones por Pasteurella/prevención & control , Pasteurella multocida/efectos de la radiación
17.
Front Immunol ; 12: 666543, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211465

RESUMEN

Sheeppox (SPP) is a highly contagious disease of small ruminants caused by sheeppox virus (SPPV) and predominantly occurs in Asia and Africa with significant economic losses. SPPV is genetically and immunologically closely related to goatpox virus (GTPV) and lumpy skin disease virus (LSDV), which infect goats and cattle respectively. SPPV live attenuated vaccines (LAVs) are used for vaccination against SPP and goatpox (GTP). Mechanisms related to innate immunity elicited by SPPV are unknown. Although adaptive immunity is responsible for long-term immunity, it is the innate responses that prevent viral invasion and replication before LAVs generate specific long-term protection. We analyzed the relative expression of thirteen selected genes that included pattern recognition receptors (PRRs), Nuclear factor-κß p65 (NF-κß), and cytokines to understand better the interaction between SPPV and its host. The transcripts of targeted genes in sheep PBMC incubated with either wild type (WT) or LAV SPPV were analyzed using quantitative PCR. Among PRRs, we observed a significantly higher expression of RIG-1 in PBMC incubated with both WT and LAV, with the former producing the highest expression level. However, there was high inter-individual variability in cytokine transcripts levels among different donors, with the expression of TNFα, IL-15, and IL-10 all significantly higher in both PBMC infected with either WT or LAV compared to control PBMC. Correlation studies revealed a strong significant correlation between RIG-1 and IL-10, between TLR4, TNFα, and NF-κß, between IL-18 and IL-15, and between NF-κß and IL-10. There was also a significant negative correlation between RIG-1 and IFNγ, between TLR3 and IL-1 ß, and between TLR4 and IL-15 (P< 0.05). This study identified RIG-1 as an important PRR in the signaling pathway of innate immune activation during SPPV infection, possibly through intermediate viral dsRNA. The role of immunomodulatory molecules produced by SPPV capable of inhibiting downstream signaling activation following RIG-1 upregulation is discussed. These findings advance our knowledge of the induction of immune responses by SPPV and will help develop safer and more potent vaccines against SPP and GTP.


Asunto(s)
Capripoxvirus/inmunología , Inmunidad Innata , Infecciones por Poxviridae/veterinaria , Enfermedades de las Ovejas/prevención & control , Vacunas Virales/inmunología , Animales , Capripoxvirus/genética , Capripoxvirus/aislamiento & purificación , Leucocitos Mononucleares/inmunología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular , Ovinos , Vacunas Atenuadas/inmunología
18.
Biochem Biophys Rep ; 26: 100986, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33869809

RESUMEN

Seaweeds have been regarded as a reservoir of biologically active molecules that are important in the pharmaceutical industry. The aim of the present study was to explore the wound healing properties and to assess the safety of the seaweed Sargassum ilicifolium and Ulva lactuca. Enhanced cell proliferation and cell migration activities were observed in L929 cells treated with S. ilicifolium extract compared to U. lactuca extract treated cells and the control group. In-vivo experiments were conducted using five groups (10 in each) of Albino mice (BALB/c). Mice in group I and group II were treated (Orally, 100 mg/kg BW/day) with aqueous extracts of S. ilicifolium and U. lactuca, respectively for 14 days. Treatment group III received a topical application of the aqueous extract of S. ilicifolium (25% w/w) and ointment base (75% w/w) (2 g/kg BW/day, for 14 days). Group IV (Control) received an equal amount of distilled water, orally and mice in group V kept without wounds. The extract from S. ilicifolium showed stronger wound healing properties than the one from Ulva lactuca. Histopathological findings also revealed that the healing process was significantly enhanced in the mice group treated orally with S. ilicifolium aqueous extract. These findings show that S. ilicifolium species possess promising wound healing properties in-vitro and in-vivo.

19.
Vet Immunol Immunopathol ; 227: 110092, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32673891

RESUMEN

The establishment of a panel of immune markers is of paramount importance to understand the different transcription patterns of infectious diseases in livestock. The array of commercially available immunological assays for cattle and sheep is currently limited, due to the lack of antibodies for these species. Even though SYBR Green based real time quantitative PCR (qPCR) is the most commonly used method to study cytokine transcription in ruminants, a lack of standardization impairs its implementation in the study of different ruminant diseases. In order to obtain reliable qPCR results, several variables need to be considered: choice of reference genes for optimal normalization, variation of annealing temperature among primer sets, and assay specificity and sensitivity. In this study, we developed and validated a panel of immune markers in bovine and ovine samples using SYBR Green based qPCR in a cost-effective way with multiple primer sets optimised to amplify at a common thermal cycling temperature. Twenty primer sets were designed to quantify immune markers (IL-1b, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-15, IL-18, IL-23, TNF-α, IFN-γ, IFN-α, Ki-67, NFkB-65, TLR-3, TLR-4, TLR-8 and Rig-1) in ovine and bovine templates. For optimal normalization and selection of suitable reference genes, primer sets that measure the transcription of five reference genes were also included in the panel. The amplification efficiency, linearity and specificity was validated for all target genes. Optimal amplification conditions were achieved in both ovine and bovine samples for all gene targets, with the exception of Ki67. Relative quantification studies were performed on ovine and bovine mRNA obtained from sheep peripheral blood mononuclear cells (PBMCs) stimulated with three different treatments (PMA/Ionomycin, Concanavalin A (Con A) and pokeweed mitogen (PWM)). Pokeweed and ConA efficiently induced gene transcription of most of the targeted genes, while PMA/Ionomycin showed a weaker induction. Finally, we further assessed usability of our panel by running it on bovine monocyte derived dendritic cells (MoDCs) stimulated with different vaccines. Results confirmed the induction of a specific pro-inflammatory gene transcription pattern by rabies vaccine, which resembles the one occurring during viral infection. Altogether, we validated the efficiency and usability of an extended real-time PCR panel that gives the possibility to rapidly measure a broad spectrum of ovine and bovine immune markers by using a single set of reagents and protocol thus representing a valid and cost-effective tool for research purposes.


Asunto(s)
Citocinas/genética , Expresión Génica/inmunología , Leucocitos Mononucleares/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Animales , Biomarcadores/análisis , Bovinos , Células Cultivadas , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Ovinos
20.
Heliyon ; 6(6): e03918, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32529057

RESUMEN

BACKGROUND: Seaweeds are an important source of bioactive compounds which are applied in various aspects of medicinal investigations. The present study was conducted to investigate cytoxicity (in-vitro and in-vivo) and wound healing activity of different seaweed species in Sri Lanka. METHODS: Twenty-three seaweed samples, belonging to Phaeophyta (Brown), Chlorophyta (Green) and Rhodophyta (Red) were used for the experiments. Samples were collected from the inter-tidal and the sub-tidal habitats around Sri Lankan coast (Southern, Northern and North-western). Aqueous seaweed extracts were tested for cytotoxic and wound healing activity; in-vitro and in-vivo. To determine toxicity of aqueous seaweed extracts, brine shrimp lethality assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay on mouse fibroblasts (L929) cell line were performed. Cell migration induction of seaweed extracts was assessed by scratch wound healing assay using L929 cell line. Based on the our previous experiments S.ilicifolium (SW23) was selected for the in vivo study to confirm our hypothesis. Albino mice (BALB/c) were divided into three groups (12 in each) and a circular area (44.07 ± 02.51 mm2) of full skin was excised to create a wound in mice group II and III. Group III received aqueous extract of Sargasum illicifolium (400 mg/kg BW/day for 12 days, orally), Group II received distilled water for 12 days whereas Group I was used as the control group and it was tested without forming wounds and without providing any treatment. Further, the expression level of Tumor Necrosis Factor (TNF-α) and Transforming Growth Factor-ß (TGF-ß) via RT-PCR were measured every three days until the end of the experiment. RESULTS: Phytochemical tests showed positive results to flavonoids in all the selected green seaweeds and alkaloids were observed in red seaweeds. In the toxicity assay, red seaweed, Acanthophora spicifera (SW17) was found to be highly effective on nauplii of brine shrimp (LC50 = 0.072 µg/µl). LC50 value of green seaweed species, Caulerpa racemosa (SW02 and SW08) and Caulerpa sertularioides (SW10) was not found within the tested concentration series. The highest cytotoxic effect on L929 cell line was exhibited by aqueous extracts of red seaweed; Jania adhaereus with 50.70 ± 7.304% cell viability compared with control group. The highest cell migration activity was observed in L929 cell line group treated with extracts of green seaweed namely; Halimeda opuntin (SW07) and extracts of brown seaweed namely; Stoechospermum polypodioides (SW11). Extracts of S. illicifolium (SW23) exhibited a significantly enhanced wound healing activity in mice group III within three days (P < 0.05) with an open wound area of 17.35 ± 1.94 mm2 compared with control group (26.29 ± 2.42 mm2). TGF-ß gene expression peaked on 6th day of post-wound and subsequently decreased on 9th day of post-wound in mice group III. TNF-α expression was suppressed in mice group III whereas it was elevated in group II. TGF-ß expression is enhanced in the treatment group compared to the control group. CONCLUSIONS: Aqueous extracts of selected seaweeds are a significant source of potential compounds with wound healing properties, which might be helpful in the healing of various wounds. This also infers that many species of brown and red seaweeds have the potential of wound healing, specifically, Sargasum illicifolium and Jania adhaereus could be a potential candidate for in-vivo studies related to wound healing and cancer therapy in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...