Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7081, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925420

RESUMEN

B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.


Asunto(s)
Linfocitos B , Macrófagos , Ratones , Animales , Anticuerpos , Hígado , Pulmón
2.
Sci Immunol ; 8(84): eadd5976, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37267383

RESUMEN

Analyses of healthy tissue reveal signatures that identify resident memory CD8+ T cells (TRM), which survey tissues without recirculating. The density of TRM phenotype cells within solid tumors correlates favorably with prognosis, suggesting that intratumoral residents control cancer. However, residence has not been directly tested, and intratumoral TRM phenotype cells could instead reflect aspects of the microenvironment that correlate with prognosis. Using a breast cancer model in mice, we found that conventional TRM markers do not inform the tumor residence of either bystander or tumor-specific cells, which exhibit further distinct phenotypes in the tumor microenvironment and healthy mammary tissue. Rather, tumor-specific, stem progenitor CD8+ T cells migrate to tumors and become resident while acquiring select markers of exhaustion. These data indicate that tonic antigen stimulation and the tumor environment drive distinct programs of residence compared with healthy tissues and that tumor immunity is sustained by continued migration of tumor-specific stem cells.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Ratones , Animales , Memoria Inmunológica , Antígenos , Pronóstico , Microambiente Tumoral
3.
Mucosal Immunol ; 16(1): 17-26, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657662

RESUMEN

Adaptive immunity is didactically partitioned into humoral and cell-mediated effector mechanisms, which may imply that each arm is separate and does not function together. Here, we report that the activation of CD8+ resident memory T cells (TRM) in nonlymphoid tissues triggers vascular permeability, which facilitates rapid distribution of serum antibodies into local tissues. TRM reactivation was associated with transcriptional upregulation of antiviral signaling pathways as well as Fc receptors and components of the complement cascade. Effects were local, but evidence is presented that TRM in brain and reproductive mucosa are both competent to induce rapid antibody exudation. TRM reactivation in the mouse female genital tract increased local concentrations of virus-specific neutralizing antibodies, including anti-vesicular stomatitis virus, and passively transferred anti-HIV antibodies. We showed that this response was sufficient to increase the efficacy of ex vivo vesicular stomatitis virus neutralization. These results indicate that CD8+ TRM antigen recognition can enhance local humoral immunity.


Asunto(s)
Linfocitos T CD8-positivos , Estomatitis , Ratones , Animales , Femenino , Células T de Memoria , Inmunoglobulinas , Memoria Inmunológica
4.
Sci Immunol ; 7(78): eadd3075, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36459542

RESUMEN

Respiratory tract resident memory T cells (TRM), typically generated by local vaccination or infection, can accelerate control of pulmonary infections that evade neutralizing antibody. It is unknown whether mRNA vaccination establishes respiratory TRM. We generated a self-amplifying mRNA vaccine encoding the influenza A virus nucleoprotein that is encapsulated in modified dendron-based nanoparticles. Here, we report how routes of immunization in mice, including contralateral versus ipsilateral intramuscular boosts, or intravenous and intranasal routes, influenced influenza-specific cell-mediated and humoral immunity. Parabiotic surgeries revealed that intramuscular immunization was sufficient to establish CD8 TRM in the lung and draining lymph nodes. Contralateral, compared with ipsilateral, intramuscular boosting broadened the distribution of lymph node TRM and T follicular helper cells but slightly diminished resulting levels of serum antibody. Intranasal mRNA delivery established modest circulating CD8 and CD4 T cell memory but augmented distribution to the respiratory mucosa. Combining intramuscular immunizations with an intranasal mRNA boost achieved high levels of both circulating T cell memory and lung TRM. Thus, routes of mRNA vaccination influence humoral and cell-mediated immunity, and intramuscular prime-boosting establishes lung TRM that can be further expanded by an additional intranasal immunization.


Asunto(s)
Linfocitos T CD4-Positivos , Vacunación , Animales , Ratones , ARN Mensajero , Anticuerpos Neutralizantes , Linfocitos T CD8-positivos , Vacunas de ARNm
5.
J Immunol ; 209(9): 1691-1702, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122933

RESUMEN

Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and a natural mouse pathogen. LCMV-Armstrong, an acutely resolved strain, and LCMV-clone 13, a mutant that establishes chronic infection, have provided contrasting infection models that continue to inform the fundamental biology of T cell differentiation, regulation of exhaustion, and response to checkpoint blockade. In this study, we report the isolation and characterization of LCMV-Minnesota (LCMV-MN), which was naturally transmitted to laboratory mice upon cohousing with pet shop mice and shares 80-95% amino acid homology with previously characterized LCMV strains. Infection of laboratory mice with purified LCMV-MN resulted in viral persistence that was intermediate between LCMV-Armstrong and -clone 13, with widely disseminated viral replication and viremia that was controlled within 15-30 d, unless CD4 T cells were depleted prior to infection. LCMV-MN-responding CD8+ T cells biased differentiation toward the recently described programmed death-1 (PD-1)+CXCR5+Tim-3lo stemlike CD8+ T cell population (also referred to as progenitor exhausted T cells) that effectuates responses to PD-1 blockade checkpoint inhibition, a therapy that rejuvenates responses against chronic infections and cancer. This subset resembled previously characterized PD-1+TCF1+ stemlike CD8+ T cells by transcriptional, phenotypic, and functional assays, yet was atypically abundant. LCMV-MN may provide a tool to better understand the breadth of immune responses in different settings of chronic Ag stimulation as well as the ontogeny of progenitor exhausted T cells and the regulation of responsiveness to PD-1 blockade.


Asunto(s)
Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica , Aminoácidos/metabolismo , Animales , Linfocitos T CD8-positivos , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Viremia/metabolismo
7.
Cancer Immunol Immunother ; 71(8): 1863-1875, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35001153

RESUMEN

Glioblastoma multiforme (GBM) is among the most aggressive, treatment-resistant cancers, and despite standard of care surgery, radiation and chemotherapy, is invariably fatal. GBM is marked by local and systemic immunosuppression, contributing to resistance to existing immunotherapies that have had success in other tumor types. Memory T cells specific for previous infections reside in tissues throughout the host and are capable of rapid and potent immune activation. Here, we show that virus-specific memory CD8 + T cells expressing tissue-resident markers populate the mouse and human glioblastoma microenvironment. Reactivating virus-specific memory T cells through intratumoral delivery of adjuvant-free virus-derived peptide triggered local immune activation. This delivery translated to antineoplastic effects, which improved survival in a murine glioblastoma model. Our results indicate that virus-specific memory T cells are a significant part of the glioblastoma immune microenvironment and may be leveraged to promote anti-tumoral immunity.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Humanos , Tolerancia Inmunológica , Inmunoterapia/métodos , Células T de Memoria , Ratones , Microambiente Tumoral
8.
Cell Host Microbe ; 29(12): 1815-1827.e6, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34731647

RESUMEN

Laboratory mice comprise an expeditious model for preclinical vaccine testing; however, vaccine immunogenicity in these models often inadequately translates to humans. Reconstituting physiologic microbial experience to specific pathogen-free (SPF) mice induces durable immunological changes that better recapitulate human immunity. We examined whether mice with diverse microbial experience better model human responses post vaccination. We co-housed laboratory mice with pet-store mice, which have varied microbial exposures, and then assessed immune responses to influenza vaccines. Human transcriptional responses to influenza vaccination are better recapitulated in co-housed mice. Although SPF and co-housed mice were comparably susceptible to acute influenza infection, vaccine-induced humoral responses were dampened in co-housed mice, resulting in poor control upon challenge. Additionally, protective heterosubtypic T cell immunity was compromised in co-housed mice. Because SPF mice exaggerated humoral and T cell protection upon influenza vaccination, reconstituting microbial experience in laboratory mice through co-housing may better inform preclinical vaccine testing.


Asunto(s)
Inmunogenicidad Vacunal , Vacunas contra la Influenza/inmunología , Animales , Femenino , Humanos , Inmunidad Humoral , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Vacunación
9.
J Immunol ; 207(2): 376-379, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193597

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing Abs target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with a human adenovirus type 5 vector expressing the SARS-CoV-2 nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and K18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral Ags in SARS-CoV-2 vaccines, even if they are not a target of neutralizing Abs, to broaden epitope coverage and immune effector mechanisms.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , Línea Celular , Chlorocebus aethiops , Cricetinae , Femenino , Memoria Inmunológica/inmunología , Recuento de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/inmunología , Vacunación , Células Vero
10.
bioRxiv ; 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33948591

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Neutralizing antibodies target the receptor binding domain of the spike (S) protein, a focus of successful vaccine efforts. Concerns have arisen that S-specific vaccine immunity may fail to neutralize emerging variants. We show that vaccination with HAd5 expressing the nucleocapsid (N) protein can establish protective immunity, defined by reduced weight loss and viral load, in both Syrian hamsters and k18-hACE2 mice. Challenge of vaccinated mice was associated with rapid N-specific T cell recall responses in the respiratory mucosa. This study supports the rationale for including additional viral antigens, even if they are not a target of neutralizing antibodies, to broaden epitope coverage and immune effector mechanisms.

11.
Nature ; 592(7854): 457-462, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731934

RESUMEN

In metazoans, specific tasks are relegated to dedicated organs that are established early in development, occupy discrete locations and typically remain fixed in size. The adult immune system arises from a centralized haematopoietic niche that maintains self-renewing potential1,2, and-upon maturation-becomes distributed throughout the body to monitor environmental perturbations, regulate tissue homeostasis and mediate organism-wide defence. Here we examine how immunity is integrated within adult mouse tissues, and address issues of durability, expansibility and contributions to organ cellularity. Focusing on antiviral T cell immunity, we observed durable maintenance of resident memory T cells up to 450 days after infection. Once established, resident T cells did not require the T cell receptor for survival or retention of a poised, effector-like state. Although resident memory indefinitely dominated most mucosal organs, surgical separation of parabiotic mice revealed a tissue-resident provenance for blood-borne effector memory T cells, and circulating memory slowly made substantial contributions to tissue immunity in some organs. After serial immunizations or cohousing with pet-shop mice, we found that in most tissues, tissue pliancy (the capacity of tissues to vary their proportion of immune cells) enables the accretion of tissue-resident memory, without axiomatic erosion of pre-existing antiviral T cell immunity. Extending these findings, we demonstrate that tissue residence and organ pliancy are generalizable aspects that underlie homeostasis of innate and adaptive immunity. The immune system grows commensurate with microbial experience, reaching up to 25% of visceral organ cellularity. Regardless of the location, many populations of white blood cells adopted a tissue-residency program within nonlymphoid organs. Thus, residence-rather than renewal or recirculation-typifies nonlymphoid immune surveillance, and organs serve as pliant storage reservoirs that can accommodate continuous expansion of the cellular immune system throughout life. Although haematopoiesis restores some elements of the immune system, nonlymphoid organs sustain an accrual of durable tissue-autonomous cellular immunity that results in progressive decentralization of organismal immune homeostasis.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Microambiente Celular , Homeostasis , Memoria Inmunológica , Vigilancia Inmunológica , Inmunidad Adaptativa , Animales , Femenino , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/inmunología
12.
J Immunol ; 206(5): 931-935, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33441437

RESUMEN

The magnitude of SARS-CoV-2-specific T cell responses correlates inversely with human disease severity, suggesting T cell involvement in primary control. Whereas many COVID-19 vaccines focus on establishing humoral immunity to viral spike protein, vaccine-elicited T cell immunity may bolster durable protection or cross-reactivity with viral variants. To better enable mechanistic and vaccination studies in mice, we identified a dominant CD8 T cell SARS-CoV-2 nucleoprotein epitope. Infection of human ACE2 transgenic mice with SARS-CoV-2 elicited robust responses to H2-Db/N219-227, and 40% of HLA-A*02+ COVID-19 PBMC samples isolated from hospitalized patients responded to this peptide in culture. In mice, i.m. prime-boost nucleoprotein vaccination with heterologous vectors favored systemic CD8 T cell responses, whereas intranasal boosting favored respiratory immunity. In contrast, a single i.v. immunization with recombinant adenovirus established robust CD8 T cell memory both systemically and in the respiratory mucosa.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Epítopos de Linfocito T/inmunología , SARS-CoV-2/inmunología , Vacunación/métodos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/virología , Células Cultivadas , Proteínas de la Nucleocápside de Coronavirus/inmunología , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/inmunología , Antígeno HLA-A2/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
J Exp Med ; 217(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32568362

RESUMEN

Numerous observations indicate that resident memory T cells (TRM) undergo unusually rapid attrition within the lung. Here we demonstrate that contraction of lung CD8+ T cell responses after influenza infection is contemporized with egress of CD69+/CD103+ CD8+ T cells to the draining mediastinal LN via the lymphatic vessels, which we term retrograde migration. Cells within the draining LN retained canonical markers of lung TRM, including CD103 and CD69, lacked Ly6C expression (also a feature of lung TRM), maintained granzyme B expression, and did not equilibrate among immunized parabiotic mice. Investigations of bystander infection or removal of the TCR from established memory cells revealed that the induction of the TRM phenotype was dependent on antigen recognition; however, maintenance was independent. Thus, local lung infection induces CD8+ T cells with a TRM phenotype that nevertheless undergo retrograde migration, yet remain durably committed to the residency program within the draining LN, where they provide longer-lived regional memory while chronicling previous upstream antigen experiences.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Movimiento Celular/inmunología , Memoria Inmunológica , Virus de la Influenza A/inmunología , Pulmón/inmunología , Ganglios Linfáticos/inmunología , Infecciones por Orthomyxoviridae/inmunología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/patología , Movimiento Celular/genética , Femenino , Pulmón/patología , Pulmón/virología , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones Transgénicos , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/patología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología
14.
J Immunol ; 204(9): 2552-2561, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32205425

RESUMEN

The adaptive immune function of lymph nodes is dependent on constant recirculation of lymphocytes. In this article, we identify neutrophils present in the lymph node at steady state, exhibiting the same capacity for recirculation. In germ-free mice, neutrophils still recirculate through lymph nodes, and in mice cohoused with wild microbiome mice, the level of neutrophils in lymph nodes increases significantly. We found that at steady state, neutrophils enter the lymph node entirely via L-selectin and actively exit via efferent lymphatics via an S1P dependent mechanism. The small population of neutrophils in the lymph node can act as reconnaissance cells to recruit additional neutrophils in the event of bacterial dissemination to the lymph node. Without these reconnaissance cells, there is a delay in neutrophil recruitment to the lymph node and a reduction in swarm formation following Staphylococcus aureus infection. This ability to recruit additional neutrophils by lymph node neutrophils is initiated by LTB4. This study establishes the capacity of neutrophils to recirculate, much like lymphocytes via L-selectin and high endothelial venules in lymph nodes and demonstrates how the presence of neutrophils at steady state fortifies the lymph node in case of an infection disseminating through lymphatics.


Asunto(s)
Ganglios Linfáticos/inmunología , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Infecciones Estafilocócicas/inmunología , Animales , Endotelio/inmunología , Endotelio/microbiología , Femenino , Selectina L/inmunología , Ganglios Linfáticos/microbiología , Vasos Linfáticos/inmunología , Vasos Linfáticos/microbiología , Linfocitos/inmunología , Linfocitos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/inmunología , Receptores de Esfingosina-1-Fosfato/inmunología , Infecciones Estafilocócicas/microbiología , Vénulas/inmunología , Vénulas/microbiología
15.
Nat Immunol ; 21(4): 412-421, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32066954

RESUMEN

Central memory T (TCM) cells patrol lymph nodes and perform conventional memory responses on restimulation: proliferation, migration and differentiation into diverse T cell subsets while also self-renewing. Resident memory T (TRM) cells are parked within single organs, share properties with terminal effectors and contribute to rapid host protection. We observed that reactivated TRM cells rejoined the circulating pool. Epigenetic analyses revealed that TRM cells align closely with conventional memory T cell populations, bearing little resemblance to recently activated effectors. Fully differentiated TRM cells isolated from small intestine epithelium exhibited the potential to differentiate into TCM cells, effector memory T cells and TRM cells on recall. Ex-TRM cells, former intestinal TRM cells that rejoined the circulating pool, heritably maintained a predilection for homing back to their tissue of origin on subsequent reactivation and a heightened capacity to redifferentiate into TRM cells. Thus, TRM cells can rejoin the circulation but are advantaged to re-form local TRM when called on.


Asunto(s)
Plasticidad de la Célula/inmunología , Memoria Inmunológica/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Diferenciación Celular/inmunología , Femenino , Mucosa Intestinal/inmunología , Intestino Delgado/inmunología , Ratones , Ratones Endogámicos C57BL
16.
Curr Opin Immunol ; 63: 35-42, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32018169

RESUMEN

Advances in the field of T cell memory, including the discovery of tissue residency, continue to add to the list of defined T cell subsets. Here, we briefly review the role of resident memory T cells (TRM) in protective immunity, and propose that they exhibit developmental and migrational plasticity. We discuss T cell classification, the concept of cell type versus 'subset', and the difficulty of inferring developmental relationships between cells occupying malleable differentiation states. We propose that popular subsetting strategies do not perfectly define boundaries of developmental potential. We integrate TRM into a 'terrace' model that classifies memory T cells along a continuous axis of decreasing developmental potential. This model also segregates cells on the basis of migration properties, although different migration properties are viewed as parallel differentiation states that may be permissive to change.


Asunto(s)
Memoria Inmunológica/inmunología , Modelos Inmunológicos , Linfocitos T/inmunología , Animales , Diferenciación Celular/inmunología , Humanos
17.
J Immunol ; 203(4): 936-945, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31235552

RESUMEN

Resident memory T cells (TRM) in the lung are vital for heterologous protection against influenza A virus (IAV). Environmental factors are necessary to establish lung TRM; however, the role of T cell-intrinsic factors like TCR signal strength have not been elucidated. In this study, we investigated the impact of TCR signal strength on the generation and maintenance of lung TRM after IAV infection. We inserted high- and low-affinity OT-I epitopes into IAV and infected mice after transfer of OT-I T cells. We uncovered a bias in TRM formation in the lung elicited by lower affinity TCR stimulation. TCR affinity did not impact the overall phenotype or long-term maintenance of lung TRM Overall, these findings demonstrate that TRM formation is negatively correlated with increased TCR signal strength. Lower affinity cells may have an advantage in forming TRM to ensure diversity in the Ag-specific repertoire in tissues.


Asunto(s)
Memoria Inmunológica/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Diferenciación Celular/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología
18.
Nat Commun ; 10(1): 567, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718505

RESUMEN

The immunosuppressive tumor microenvironment limits the success of current immunotherapies. The host retains memory T cells specific for previous infections throughout the entire body that are capable of executing potent and immediate immunostimulatory functions. Here we show that virus-specific memory T cells extend their surveillance to mouse and human tumors. Reactivating these antiviral T cells can arrest growth of checkpoint blockade-resistant and poorly immunogenic tumors in mice after injecting adjuvant-free non-replicating viral peptides into tumors. Peptide mimics a viral reinfection event to memory CD8+ T cells, triggering antigen presentation and cytotoxic pathways within the tumor, activating dendritic cells and natural killer cells, and recruiting the adaptive immune system. Viral peptide treatment of ex vivo human tumors recapitulates immune activation gene expression profiles observed in mice. Lastly, peptide therapy renders resistant mouse tumors susceptible to PD-L1 blockade. Thus, re-stimulating known antiviral immunity may provide a unique therapeutic approach for cancer immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Niño , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Persona de Mediana Edad , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T Citotóxicos/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/fisiología , Adulto Joven
19.
Sci Immunol ; 3(24)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29858286

RESUMEN

Current paradigms of CD8+ T cell-mediated protection in HIV infection center almost exclusively on studies of peripheral blood, which is thought to provide a window into immune activity at the predominant sites of viral replication in lymphoid tissues (LTs). Through extensive comparison of blood, thoracic duct lymph (TDL), and LTs in different species, we show that many LT memory CD8+ T cells bear phenotypic, transcriptional, and epigenetic signatures of resident memory T cells (TRMs). Unlike their circulating counterparts in blood or TDL, most of the total and follicular HIV-specific CD8+ T cells in LTs also resemble TRMs Moreover, high frequencies of HIV-specific CD8+ TRMs with skewed clonotypic profiles relative to matched blood samples are present in LTs of individuals who spontaneously control HIV replication in the absence of antiretroviral therapy (elite controllers). Single-cell RNA sequencing analysis confirmed that HIV-specific TRMs are enriched for effector-related immune genes and signatures compared with HIV-specific non-TRMs in elite controllers. Together, these data indicate that previous studies in blood have largely failed to capture the major component of HIV-specific CD8+ T cell responses resident within LTs.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Memoria Inmunológica , Tejido Linfoide/citología , Adulto , Animales , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Linfocitos T CD8-positivos/metabolismo , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/inmunología , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Carga Viral/efectos de los fármacos , Carga Viral/inmunología , Replicación Viral/efectos de los fármacos , Replicación Viral/inmunología , Adulto Joven
20.
Immunity ; 48(2): 327-338.e5, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29466758

RESUMEN

Immunosurveillance of secondary lymphoid organs (SLO) is performed by central memory T cells that recirculate through blood. Resident memory T (Trm) cells remain parked in nonlymphoid tissues and often stably express CD69. We recently identified Trm cells within SLO, but the origin and phenotype of these cells remains unclear. Using parabiosis of "dirty" mice, we found that CD69 expression is insufficient to infer stable residence of SLO Trm cells. Restimulation of nonlymphoid memory CD8+ T cells within the skin or mucosa resulted in a substantial increase in bona fide Trm cells specifically within draining lymph nodes. SLO Trm cells derived from emigrants from nonlymphoid tissues and shared some transcriptional and phenotypic signatures associated with nonlymphoid Trm cells. These data indicate that nonlymphoid cells can give rise to SLO Trm cells and suggest vaccination strategies by which memory CD8+ T cell immunosurveillance can be regionalized to specific lymph nodes.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Ganglios Linfáticos/inmunología , Animales , Antígenos CD/análisis , Antígenos de Diferenciación de Linfocitos T/análisis , Femenino , Lectinas Tipo C/análisis , Coriomeningitis Linfocítica/inmunología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA