Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(38): eadh7746, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37729403

RESUMEN

Modeled water-mass changes in the North Pacific thermocline, both in the subsurface and at the surface, reveal the impact of the competition between anthropogenic aerosols (AAs) and greenhouse gases (GHGs) over the past 6 decades. The AA effect overwhelms the GHG effect during 1950-1985 in driving salinity changes on density surfaces, while after 1985 the GHG effect dominates. These subsurface water-mass changes are traced back to changes at the surface, of which ~70% stems from the migration of density surface outcrops, equatorward due to regional cooling by AAs and subsequent poleward due to warming by GHGs. Ocean subduction connects these surface outcrop changes to the main thermocline. Both observations and models reveal this transition in climate forcing around 1985 and highlight the important role of AA climate forcing on our oceans' water masses.

2.
Ann Rev Mar Sci ; 14: 379-403, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34102064

RESUMEN

Argo, an international, global observational array of nearly 4,000 autonomous robotic profiling floats, each measuring ocean temperature and salinity from 0 to 2,000 m on nominal 10-day cycles, has revolutionized physical oceanography. Argo started at the turn of the millennium,growing out of advances in float technology over the previous several decades. After two decades, with well over 2 million profiles made publicly available in real time, Argo data have underpinned more than 4,000 scientific publications and improved countless nowcasts, forecasts, and projections. We review a small subset of those accomplishments, such as elucidating remarkable zonal jets spanning the deep tropical Pacific; increasing understanding of ocean eddies and the roles of mixing in shaping water masses and circulation; illuminating interannual to decadal ocean variability; quantifying, in concert with satellite data, contributions of ocean warming and ice melting to sea level rise; improving coupled numerical weather predictions; and underpinning decadal climate forecasts.


Asunto(s)
Oceanografía , Agua de Mar , Clima , Salinidad , Temperatura
3.
Science ; 336(6080): 455-8, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22539717

RESUMEN

Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 ± 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.

4.
Nature ; 453(7198): 1090-3, 2008 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-18563162

RESUMEN

Changes in the climate system's energy budget are predominantly revealed in ocean temperatures and the associated thermal expansion contribution to sea-level rise. Climate models, however, do not reproduce the large decadal variability in globally averaged ocean heat content inferred from the sparse observational database, even when volcanic and other variable climate forcings are included. The sum of the observed contributions has also not adequately explained the overall multi-decadal rise. Here we report improved estimates of near-global ocean heat content and thermal expansion for the upper 300 m and 700 m of the ocean for 1950-2003, using statistical techniques that allow for sparse data coverage and applying recent corrections to reduce systematic biases in the most common ocean temperature observations. Our ocean warming and thermal expansion trends for 1961-2003 are about 50 per cent larger than earlier estimates but about 40 per cent smaller for 1993-2003, which is consistent with the recognition that previously estimated rates for the 1990s had a positive bias as a result of instrumental errors. On average, the decadal variability of the climate models with volcanic forcing now agrees approximately with the observations, but the modelled multi-decadal trends are smaller than observed. We add our observational estimate of upper-ocean thermal expansion to other contributions to sea-level rise and find that the sum of contributions from 1961 to 2003 is about 1.5 +/- 0.4 mm yr(-1), in good agreement with our updated estimate of near-global mean sea-level rise (using techniques established in earlier studies) of 1.6 +/- 0.2 mm yr(-1).


Asunto(s)
Calor , Agua de Mar/análisis , Predicción , Efecto Invernadero , Historia del Siglo XX , Historia del Siglo XXI , Modelos Teóricos , Océanos y Mares , Proyectos de Investigación , Factores de Tiempo , Erupciones Volcánicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA