Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Rep ; 40(9): 111274, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044846

RESUMEN

Cleavage of one cell into two is the most dramatic event in the life of a cell. Plasma membrane fission occurs within a narrow intercellular bridge (ICB) between the daughter cells, but the mechanisms underlying ICB formation and maturation are poorly understood. Here we identify CIN85 as an ICB assembly factor and demonstrate its requirement for robust and timely cytokinesis. CIN85 interacts directly with the N-terminal region of anillin and SEPT9 and thereby facilitates SEPT9-containing filament localization to the plasma membrane of the ICB. In contrast, the C-terminal pleckstrin homology (PH) domain of anillin binds to septin units lacking SEPT9 but enriched in SEPT11. Anillin's interactions with distinct septin units are required to promote ICB elongation and maturation that, we propose, generate the physical space into which the abscission machinery is recruited to drive the final membrane scission event releasing two independent daughter cells.


Asunto(s)
Citocinesis , Septinas , Proteínas Contráctiles/metabolismo , Citoesqueleto/metabolismo , Septinas/metabolismo
3.
Science ; 374(6573): 1318-1319, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882457

RESUMEN

A newly described pathway activates separation of lens cells at the end of cytokinesis.


Asunto(s)
Lípidos
4.
Nat Commun ; 12(1): 2409, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893302

RESUMEN

During cytokinesis, the actin cytoskeleton is partitioned into two spatially distinct actin isoform specific networks: a ß-actin network that generates the equatorial contractile ring, and a γ-actin network that localizes to the cell cortex. Here we demonstrate that the opposing regulation of the ß- and γ-actin networks is required for successful cytokinesis. While activation of the formin DIAPH3 at the cytokinetic furrow underlies ß-actin filament production, we show that the γ-actin network is specifically depleted at the cell poles through the localized deactivation of the formin DIAPH1. During anaphase, CLIP170 is delivered by astral microtubules and displaces IQGAP1 from DIAPH1, leading to formin autoinhibition, a decrease in cortical stiffness and localized membrane blebbing. The contemporaneous production of a ß-actin contractile ring at the cell equator and loss of γ-actin from the poles is required to generate a stable cytokinetic furrow and for the completion of cell division.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citocinesis , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Centrosoma/metabolismo , Forminas/genética , Forminas/metabolismo , Células HeLa , Humanos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Unión Proteica , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
5.
J Biol Chem ; 295(10): 3134-3147, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32005666

RESUMEN

The actin cytoskeleton is a dynamic array of filaments that undergoes rapid remodeling to drive many cellular processes. An essential feature of filament remodeling is the spatio-temporal regulation of actin filament nucleation. One family of actin filament nucleators, the Diaphanous-related formins, is activated by the binding of small G-proteins such as RhoA. However, RhoA only partially activates formins, suggesting that additional factors are required to fully activate the formin. Here we identify one such factor, IQ motif containing GTPase activating protein-1 (IQGAP1), which enhances RhoA-mediated activation of the Diaphanous-related formin (DIAPH1) and targets DIAPH1 to the plasma membrane. We find that the inhibitory intramolecular interaction within DIAPH1 is disrupted by the sequential binding of RhoA and IQGAP1. Binding of RhoA and IQGAP1 robustly stimulates DIAPH1-mediated actin filament nucleation in vitro In contrast, the actin capping protein Flightless-I, in conjunction with RhoA, only weakly stimulates DIAPH1 activity. IQGAP1, but not Flightless-I, is required to recruit DIAPH1 to the plasma membrane where actin filaments are generated. These results indicate that IQGAP1 enhances RhoA-mediated activation of DIAPH1 in vivo Collectively these data support a model where the combined action of RhoA and an enhancer ensures the spatio-temporal regulation of actin nucleation to stimulate robust and localized actin filament production in vivo.


Asunto(s)
Actinas/metabolismo , Forminas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Forminas/antagonistas & inhibidores , Forminas/genética , Humanos , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Activadoras de ras GTPasa/antagonistas & inhibidores , Proteínas Activadoras de ras GTPasa/genética , Proteína de Unión al GTP rhoA/metabolismo
6.
J Biol Chem ; 294(49): 18639-18649, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31653703

RESUMEN

Rigorous spatiotemporal regulation of cell division is required to maintain genome stability. The final stage in cell division, when the cells physically separate (abscission), is tightly regulated to ensure that it occurs after cytokinetic events such as chromosome segregation. A key regulator of abscission timing is Aurora B kinase activity, which inhibits abscission and forms the major activity of the abscission checkpoint. This checkpoint prevents abscission until chromosomes have been cleared from the cytokinetic machinery. Here we demonstrate that the mitosis-specific CDK11p58 kinase specifically forms a complex with cyclin L1ß that, in late cytokinesis, localizes to the stem body, a structure in the middle of the intercellular bridge that forms between two dividing cells. Depletion of CDK11 inhibits abscission, and rescue of this phenotype requires CDK11p58 kinase activity or inhibition of Aurora B kinase activity. Furthermore, CDK11p58 kinase activity is required for formation of endosomal sorting complex required for transport III filaments at the site of abscission. Combined, these data suggest that CDK11p58 kinase activity opposes Aurora B activity to enable abscission to proceed and result in successful completion of cytokinesis.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Western Blotting , División Celular/genética , División Celular/fisiología , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Citocinesis/genética , Citocinesis/fisiología , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Mitosis/genética , Mitosis/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Imagen de Lapso de Tiempo
8.
J Biol Chem ; 290(21): 13500-9, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25829492

RESUMEN

The compartmentalization of cell cycle regulators is a common mechanism to ensure the precise temporal control of key cell cycle events. For instance, many mitotic spindle assembly factors are known to be sequestered in the nucleus prior to mitotic onset. Similarly, the essential cytokinetic factor anillin, which functions at the cell membrane to promote the physical separation of daughter cells at the end of mitosis, is sequestered in the nucleus during interphase. To address the mechanism and role of anillin targeting to the nucleus in interphase, we identified the nuclear targeting motif. Here, we show that anillin is targeted to the nucleus by importin ß2 in a Ran-dependent manner through an atypical basic patch PY nuclear localization signal motif. We show that although importin ß2 binding does not regulate anillin's function in mitosis, it is required to prevent the cytosolic accumulation of anillin, which disrupts cellular architecture during interphase. The nuclear sequestration of anillin during interphase serves to restrict anillin's function at the cell membrane to mitosis and allows anillin to be rapidly available when the nuclear envelope breaks down to remodel the cellular architecture necessary for successful cell division.


Asunto(s)
Núcleo Celular/genética , Proteínas de Microfilamentos/metabolismo , Mitosis/fisiología , Señales de Localización Nuclear , beta Carioferinas/metabolismo , Membrana Celular/metabolismo , Citocinesis/fisiología , Citosol/metabolismo , Células HeLa , Humanos , Técnicas para Inmunoenzimas , Interfase/fisiología , Proteínas de Microfilamentos/genética , Membrana Nuclear/metabolismo , Transporte de Proteínas , beta Carioferinas/genética
9.
Open Biol ; 4: 130190, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24451548

RESUMEN

The final step of cytokinesis is abscission when the intercellular bridge (ICB) linking the two new daughter cells is broken. Correct construction of the ICB is crucial for the assembly of factors involved in abscission, a failure in which results in aneuploidy. Using live imaging and subdiffraction microscopy, we identify new anillin-septin cytoskeleton-dependent stages in ICB formation and maturation. We show that after the formation of an initial ICB, septin filaments drive ICB elongation during which tubules containing anillin-septin rings are extruded from the ICB. Septins then generate sites of further constriction within the mature ICB from which they are subsequently removed. The action of the anillin-septin complex during ICB maturation also primes the ICB for the future assembly of the ESCRT III component Chmp4B at the abscission site. These studies suggest that the sequential action of distinct contractile machineries coordinates the formation of the abscission site and the successful completion of cytokinesis.


Asunto(s)
Proteínas Contráctiles/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Septinas/metabolismo , Segregación Cromosómica , Proteínas Contráctiles/antagonistas & inhibidores , Proteínas Contráctiles/genética , Citocinesis , Células HeLa , Humanos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Septinas/antagonistas & inhibidores , Septinas/genética
10.
PLoS One ; 8(10): e77612, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24167578

RESUMEN

The maturation of an oocyte into an egg is a key step in preparation for fertilization. In Xenopus, oocyte maturation is independent of transcription, being regulated at the level of translation and post-translational modifications of proteins. To identify factors involved in the maturation process we used two-dimensional differential gel electrophoresis to compare the proteome of oocytes and eggs. Protein abundance changes were observed in multiple cellular pathways during oocyte maturation. Most prominent was a general reduction in abundance of enzymes in the glycolytic pathway. Injection into oocytes of the glycolytic intermediates glyceraldehyde-3-phosphate, phosphoenolpyruvate and glucose-6-phosphate prevented oocyte maturation. Instead, these metabolites stimulated ROS production and subsequent apoptosis of the oocyte. In contrast, all other metabolites tested had no effect on oocyte maturation and did not induce apoptosis. These data suggest that a subset of glycolytic metabolites have the capacity to regulate oocyte viability.


Asunto(s)
Glucólisis/fisiología , Oocitos/metabolismo , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteoma/biosíntesis , Proteínas de Xenopus/biosíntesis , Animales , Supervivencia Celular/fisiología , Femenino , Oocitos/citología , Especies Reactivas de Oxígeno/metabolismo , Xenopus laevis
11.
Mol Biol Cell ; 24(9): 1444-53, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23447705

RESUMEN

De novo formation of cells in the Drosophila embryo is achieved when each nucleus is surrounded by a furrow of plasma membrane. Remodeling of the plasma membrane during cleavage furrow ingression involves the exocytic and endocytic pathways, including endocytic tubules that form at cleavage furrow tips (CFT-tubules). The tubules are marked by amphiphysin but are otherwise poorly understood. Here we identify the septin family of GTPases as new tubule markers. Septins do not decorate CFT-tubules homogeneously: instead, novel septin complexes decorate different CFT-tubules or different domains of the same CFT-tubule. Using these new tubule markers, we determine that all CFT-tubule formation requires the BAR domain of amphiphysin. In contrast, dynamin activity is preferentially required for the formation of the subset of CFT-tubules containing the septin Peanut. The absence of tubules in amphiphysin-null embryos correlates with faster cleavage furrow ingression rates. In contrast, upon inhibition of dynamin, longer tubules formed, which correlated with slower cleavage furrow ingression rates. These data suggest that regulating the recycling of membrane within the embryo is important in supporting timely furrow ingression.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Drosophila melanogaster/citología , Embrión no Mamífero/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Biomarcadores/metabolismo , Proteínas de Drosophila/metabolismo , Dinaminas/metabolismo , Embrión no Mamífero/ultraestructura , Endocitosis , Femenino , Cinética , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/química , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Septinas/metabolismo
12.
PLoS Pathog ; 8(2): e1002523, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22319451

RESUMEN

The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae type III secreted effector HopZ1a interacts with tubulin and polymerized microtubules. We demonstrate that HopZ1a is an acetyltransferase activated by the eukaryotic co-factor phytic acid. Activated HopZ1a acetylates itself and tubulin. The conserved autoacetylation site of the YopJ / HopZ superfamily, K289, plays a critical role in both the avirulence and virulence function of HopZ1a. Furthermore, HopZ1a requires its acetyltransferase activity to cause a dramatic decrease in Arabidopsis thaliana microtubule networks, disrupt the plant secretory pathway and suppress cell wall-mediated defense. Together, this study supports the hypothesis that HopZ1a promotes virulence through cytoskeletal and secretory disruption.


Asunto(s)
Acetiltransferasas/metabolismo , Arabidopsis/microbiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Pseudomonas syringae/patogenicidad , Acetilación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Línea Celular , Células HEK293 , Humanos , Ácido Fítico/metabolismo , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/enzimología , Pseudomonas syringae/genética , Tubulina (Proteína)/metabolismo
13.
Curr Biol ; 22(1): 64-9, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22197245

RESUMEN

Cell division is achieved by a plasma membrane furrow that must ingress between the segregating chromosomes during anaphase [1-3]. The force that drives furrow ingression is generated by the actomyosin cytoskeleton, which is linked to the membrane by an as yet undefined molecular mechanism. A key component of the membrane furrow is anillin. Upon targeting to the furrow through its pleckstrin homology (PH) domain, anillin acts as a scaffold linking the actomyosin and septin cytoskeletons to maintain furrow stability (reviewed in [4, 5]). We report that the PH domain of anillin interacts with phosphatidylinositol phosphate lipids (PIPs), including PI(4,5)P(2), which is enriched in the furrow. Reduction of cellular PI(4,5)P(2) or mutations in the PH domain of anillin that specifically disrupt the interaction with PI(4,5)P(2), interfere with the localization of anillin to the furrow. Reduced expression of anillin disrupts symmetric furrow ingression that can be restored by targeting ectopically expressed anillin to the furrow using an alternate PI(4,5)P(2) binding module, a condition where the septin cytoskeleton is not recruited to the plasma membrane. These data demonstrate that the anillin PH domain has two functions: targeting anillin to the furrow by binding to PI(4,5)P(2) to maintain furrow organization and recruiting septins to the furrow.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Contráctiles/metabolismo , Lípidos de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Actinas/metabolismo , Animales , Sitios de Unión , Proteínas Sanguíneas/química , Membrana Celular/genética , Membrana Celular/ultraestructura , Proteínas Contráctiles/química , Proteínas Contráctiles/genética , Citocinesis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Mutación , Fosfatidilinositol 4,5-Difosfato , Fosfoproteínas/química , Estructura Terciaria de Proteína , Septinas/genética , Septinas/metabolismo
14.
Curr Biol ; 21(22): R930-4, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22115464

RESUMEN

In systems as diverse as yeast, slime mold and animal cells, the levels and distribution of phosphatidylinositol phosphates (PIPs) must be strictly regulated for successful cell cleavage. The precise mechanism by which PIPs function in this process remains unknown. Recent experiments are beginning to shed light on the cellular pathways in which PIPs make key contributions during cytokinesis. In particular, PIPs promote proper actin cytoskeletal organization and direct membrane trafficking in dividing cells. Future research will uncover temporal and spatial regulation of the different PIPs, thus elucidating their role in cytoskeletal and membrane events that drive cell cleavage.


Asunto(s)
Citocinesis , Eucariontes/citología , Fosfatos de Fosfatidilinositol/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Dictyostelium/citología , Dictyostelium/metabolismo , Eucariontes/metabolismo , Humanos , Levaduras/citología , Levaduras/metabolismo
15.
Mol Cell Biol ; 31(24): 5011-22, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21969606

RESUMEN

Chlamydia trachomatis infection has been suggested to induce host genome duplication and is linked to increased risks of cervical cancer. We describe here the mechanism by which Chlamydia causes a cleavage furrow defect that consistently results in the formation of multinucleated host cells, a phenomenon linked to tumorigenesis. Host signaling proteins essential for cleavage furrow initiation, ingression, and stabilization are displaced from one of the prospective furrowing cortices after Chlamydia infection. This protein displacement leads to the formation of a unique asymmetrical, unilateral cleavage furrow in infected human cells. The asymmetrical distribution of signaling proteins is caused by the physical presence of the Chlamydia inclusion at the cell equator. By using ingested latex beads, we demonstrate that the presence of a large vacuole at the cell equator is sufficient to cause furrow ingression failure and can lead to multinucleation. Interestingly, internalized latex beads of similar size do not localize to the cell equator as efficiently as Chlamydia inclusions; moreover, inhibition of bacterial protein synthesis with antibiotic reduces the frequency at which Chlamydia localizes to the cell equator. Together, these results suggest that Chlamydia effectors are involved in strategic positioning of the inclusion during cell division.


Asunto(s)
División Celular , Infecciones por Chlamydia/patología , Chlamydia trachomatis/patogenicidad , Interacciones Huésped-Patógeno , Proteínas Bacterianas/metabolismo , Infecciones por Chlamydia/microbiología , Células HeLa , Humanos , Mitosis , Fagocitosis , Transducción de Señal , Huso Acromático/metabolismo , Telofase , Vacuolas/metabolismo
16.
Biol Cell ; 103(9): 421-34, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21692748

RESUMEN

BACKGROUND INFORMATION: RanGTP, which is generated on chromosomes during mitosis, is required for microtubule spindle assembly. Due to its restricted spatial generation within the cell it has been suggested that RanGTP acts as a spatial cue to organize site-specific spindle assembly within the cell. However, the absence of a detectable sharp gradient of RanGTP in somatic cells has led to suggestions that it may only act as a spatial cue in large cells and that it may operate as a general activator of the mitotic cytosol in somatic cells. RESULTS: We report that ectopic generation of RanGTP at the plasma membrane stimulates the formation of organized arrays of microtubules at the plasma membrane. CONCLUSIONS: These results suggest that the site of RanGTP generation in a mitotic somatic cell can generate critical spatial information that specifies where microtubules grow towards and where microtubules are organized. As RanGTP is normally generated on chromosomes, these results suggest that RanGTP may play an important role in specifying that spindle assembly occurs around chromosomes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitosis , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , Línea Celular , Membrana Celular/metabolismo , Cromosomas/metabolismo , Humanos , Transporte de Proteínas , Huso Acromático/metabolismo
17.
Mol Cell Biol ; 30(22): 5318-24, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20823265

RESUMEN

Mutations in FLVCR2, a cell surface protein related by homology and membrane topology to the heme exporter/retroviral receptor FLVCR1, have recently been associated with Fowler syndrome, a vascular disorder of the brain. We previously identified FLVCR2 to function as a receptor for FY981 feline leukemia virus (FeLV). However, the cellular function of FLVCR2 remains unresolved. Here, we report the cellular function of FLVCR2 as an importer of heme, based on the following observations. First, FLVCR2 binds to hemin-conjugated agarose, and binding is competed by free hemin. Second, mammalian cells and Xenopus laevis oocytes expressing FLVCR2 display enhanced heme uptake. Third, heme import is reduced after the expression of FLVCR2-specific small interfering RNA (siRNA) or after the binding of the FY981 FeLV envelope protein to the FLVCR2 receptor. Finally, cells overexpressing FLVCR2 are more sensitive to heme toxicity, a finding most likely attributable to enhanced heme uptake. Tissue expression analysis indicates that FLVCR2 is expressed in a broad range of human tissues, including liver, placenta, brain, and kidney. The identification of a cellular function for FLVCR2 will have important implications in elucidating the pathogenic mechanisms of Fowler syndrome and of phenotypically associated disorders.


Asunto(s)
Hemo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores Virales/metabolismo , Animales , Transporte Biológico/fisiología , Encefalopatías/metabolismo , Encefalopatías/patología , Gatos , Línea Celular , Cricetinae , Cricetulus , Femenino , Hemo/toxicidad , Humanos , Proteínas de Transporte de Membrana/genética , Oocitos/citología , Oocitos/fisiología , Embarazo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Virales/genética , Síndrome , Distribución Tisular , Xenopus laevis
18.
Mol Biol Cell ; 21(6): 979-88, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20110350

RESUMEN

TPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the mitotic spindle. TPX2 moves poleward in the half-spindle and is static in the interzone and near spindle poles. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5 and to suppression of microtubule flux with nocodazole or antibodies to Kif2a. Poleward transport requires the C terminus of TPX2, a domain that interacts with Eg5. Overexpression of TPX2 lacking this domain induced excessive microtubule formation near kinetochores, defects in spindle assembly and blocked mitotic progression. Our data support a model in which poleward transport of TPX2 down-regulates its microtubule nucleating activity near kinetochores and links microtubules generated at kinetochores to dynein for incorporation into the spindle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Complejo Dinactina , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas Nucleares/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/ultraestructura , Porcinos
19.
J Biol ; 8(3): 33, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19371447

RESUMEN

BACKGROUND: Vertebrates share the same general body plan and organs, possess related sets of genes, and rely on similar physiological mechanisms, yet show great diversity in morphology, habitat and behavior. Alteration of gene regulation is thought to be a major mechanism in phenotypic variation and evolution, but relatively little is known about the broad patterns of conservation in gene expression in non-mammalian vertebrates. RESULTS: We measured expression of all known and predicted genes across twenty tissues in chicken, frog and pufferfish. By combining the results with human and mouse data and considering only ten common tissues, we have found evidence of conserved expression for more than a third of unique orthologous genes. We find that, on average, transcription factor gene expression is neither more nor less conserved than that of other genes. Strikingly, conservation of expression correlates poorly with the amount of conserved nonexonic sequence, even using a sequence alignment technique that accounts for non-collinearity in conserved elements. Many genes show conserved human/fish expression despite having almost no nonexonic conserved primary sequence. CONCLUSIONS: There are clearly strong evolutionary constraints on tissue-specific gene expression. A major challenge will be to understand the precise mechanisms by which many gene expression patterns remain similar despite extensive cis-regulatory restructuring.


Asunto(s)
Regulación de la Expresión Génica , Vertebrados , Animales , Anuros , Secuencia de Bases , Pollos , Secuencia Conservada/genética , ADN/análisis , ADN/genética , Evolución Molecular , Perfilación de la Expresión Génica , Humanos , Ratones , Alineación de Secuencia , Análisis de Secuencia de ADN , Tetraodontiformes , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Vertebrados/genética , Vertebrados/metabolismo
20.
J Cell Sci ; 122(Pt 5): 644-55, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19208764

RESUMEN

During apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule assembly is not understood. Here, we demonstrate that microtubule assembly depends upon the release of nuclear RanGTP into the apoptotic cytoplasm because this process is blocked in apoptotic cells overexpressing dominant-negative GDP-locked Ran (T24N). Actin-myosin-II contractility provides the impetus for Ran release and, consequently, microtubule assembly is blocked in blebbistatin- and Y27632-treated apoptotic cells. Importantly, the spindle-assembly factor TPX2 (targeting protein for Xklp2), colocalises with apoptotic microtubules, and siRNA silencing of TPX2, but not of the microtubule motors Mklp1 and Kid, abrogates apoptotic microtubule assembly. These data provide a molecular explanation for the assembly of the apoptotic microtubule network, and suggest important similarities with the process of RanGTP- and TPX2-mediated mitotic spindle formation.


Asunto(s)
Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , Actinas/metabolismo , Antibióticos Antineoplásicos/metabolismo , Proteínas de Ciclo Celular/genética , Ácidos Grasos Insaturados/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Miosina Tipo II/metabolismo , Proteínas Nucleares/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/metabolismo , Proteína de Unión al GTP ran/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...