Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 19(24): 9388-9402, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38059458

RESUMEN

We present a high-throughput, end-to-end pipeline for organic crystal structure prediction (CSP)─the problem of identifying the stable crystal structures that will form from a given molecule based only on its molecular composition. Our tool uses neural network potentials to allow for efficient screening and structural relaxation of generated crystal candidates. Our pipeline consists of two distinct stages: random search, whereby crystal candidates are randomly generated and screened, and optimization, where a genetic algorithm (GA) optimizes this screened population. We assess the performance of each stage of our pipeline on 21 molecules taken from the Cambridge Crystallographic Data Centre's CSP blind tests. We show that random search alone yields matches for ≈50% of targets. We then validate the potential of our full pipeline, making use of the GA to optimize the root-mean-square deviation between crystal candidates and the experimentally derived structure. With this approach, we are able to find matches for ≈80% of candidates with 10-100 times smaller initial population sizes than when using random search. Lastly, we run our full pipeline with an ANI model that is trained on a small data set of molecules extracted from crystal structures in the Cambridge Structural Database, generating ≈60% of targets. By leveraging machine learning models trained to predict energies at the density functional theory level, our pipeline has the potential to approach the accuracy of ab initio methods and the efficiency of empirical force fields.

3.
J Phys Chem A ; 126(39): 7033-7039, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36154137

RESUMEN

Accurate modeling of important nuclear quantum effects, such as nuclear delocalization, zero-point energy, and tunneling, as well as non-Born-Oppenheimer effects, requires treatment of both nuclei and electrons quantum mechanically. The nuclear-electronic orbital (NEO) method provides an elegant framework to treat specified nuclei, typically protons, on the same level as the electrons. In conventional electronic structure theory, finding a converged ground state can be a computationally demanding task; converging NEO wavefunctions, due to their coupled electronic and nuclear nature, is even more demanding. Herein, we present an efficient simultaneous optimization method that uses the direct inversion in the iterative subspace method to simultaneously converge wavefunctions for both the electrons and quantum nuclei. Benchmark studies show that the simultaneous optimization method can significantly reduce the computational cost compared to the conventional stepwise method for optimizing NEO wavefunctions for multicomponent systems.

4.
J Chem Theory Comput ; 18(3): 1340-1346, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35179376

RESUMEN

Nonadiabatic dynamical processes such as proton-coupled electron transfer and excited state intramolecular proton transfer have been the subject of much research. One of the promising theoretical methods to describe these processes is the nuclear-electronic orbital (NEO) approach. This approach inherently accounts for nuclear quantum effects within quantum chemistry calculations, and it has recently been extended to directly simulate nonadiabatic processes with the development of real-time NEO methods. These processes can also be significantly dependent on the surrounding chemical environment, however, and capturing the effects of the environment is often necessary for analyzing experimentally relevant systems. This work couples the NEO density functional theory and real-time time-dependent density functional theory approaches with solvation through the polarizable continuum model. The effects of this coupling are investigated for ground state properties, solvent-dependent vibrational frequencies, and direct excited state intramolecular proton transfer dynamics.

5.
Q J Exp Psychol (Hove) ; 75(5): 969-987, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34491145

RESUMEN

Research in social cognition has predominantly investigated perceptual and inferential processes separately; however, real-world social interactions usually involve integration between person inferences (e.g., generous, selfish) and the perception of physical appearance (e.g., thin, tall). Therefore, in the current work, we investigated the integration of different person-relevant signals, by estimating the extent to which bias in one social information processing system influences another. Following an initial stimulus-validation experiment (Experiment 1, N = 55), two further pre-registered experiments (Experiments 2, N = 55 and 3; N = 123) employed a priming paradigm to measure the effects of extraversion-diagnostic information on subsequent health and body-size judgements of a target body. The results were consistent across both priming experiments and supported our predictions: compared to trait-neutral control statements, extraversion-diagnostic statements increased judgements of health and decreased those of body size. As such, we show that trait-based knowledge does not only influence mappings towards similar types of person judgements, such as health judgements. Rather, even a brief re-configuration of trait-space alters mappings towards non-trait judgements, which are based on body size and shape. The results complement prior neuroimaging findings that showed functional interactions between the body-selective brain regions in the ventral visual stream and the theory of mind network when forming impressions of others. Therefore, we provide a functional signature of how distinct information processing units exchange signals and integrate information to form impressions. Overall, the current study underscores the value of behavioural work in complementing neuroscience research when investigating the role and properties of functional integration during impression formation. In addition, it stresses the potential limitations of an over-reliance on studying separate systems in isolation.


Asunto(s)
Mapeo Encefálico , Percepción Social , Encéfalo , Cognición , Humanos , Juicio
7.
J Phys Chem Lett ; 12(14): 3497-3502, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33792317

RESUMEN

The recent development of the Ehrenfest dynamics approach in the nuclear-electronic orbital (NEO) framework provides a promising way to simulate coupled nuclear-electronic dynamics. Our previous study showed that the NEO-Ehrenfest approach with a semiclassical traveling proton basis method yields accurate predictions of molecular vibrational frequencies. In this work, we provide a more thorough analysis of the semiclassical traveling proton basis method to elucidate its validity and convergence behavior. We also conduct NEO-Ehrenfest dynamics simulations to study an excited state intramolecular proton transfer process. These simulations reveal that nuclear quantum effects influence the predictions of proton transfer reaction rates and kinetic isotope effects due to the intrinsic delocalized nature of the quantum nuclear wave function. This work illustrates the importance of nuclear quantum effects in coupled nuclear-electronic dynamical processes and shows that the NEO-Ehrenfest approach can be a powerful tool for providing insights and predictions for these processes.

8.
J Phys Chem Lett ; 12(16): 3996-4002, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33877847

RESUMEN

The split of the 1b1 peak observed in the X-ray emission (XE) spectrum of liquid water has been the focus of intense research. Although several hypotheses have been proposed to explain the origin of this split, a consensus has not yet been reached. Here, we introduce a novel theoretical/computation approach which, combining path-integral molecular dynamics simulations with the MB-pol model and time-dependent density functional theory calculations, predicts the 1b1 splitting in liquid water and not in crystalline ice, in agreement with the experimental observations. A systematic analysis of the underlying local structure of liquid water at ambient conditions indicates that several different hydrogen-bonding motifs contribute to the overall XE line shape in the energy range corresponding to emissions from the 1b1 orbitals. This suggests that it is not possible to unambiguously attribute the split of the 1b1 peak to only two specific structural arrangements of the underlying hydrogen-bonding network.

9.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782122

RESUMEN

Ultrafast structural dynamics with different spatial and temporal scales were investigated during photodissociation of carbon monoxide (CO) from iron(II)-heme in bovine myoglobin during the first 3 ps following laser excitation. We used simultaneous X-ray transient absorption (XTA) spectroscopy and X-ray transient solution scattering (XSS) at an X-ray free electron laser source with a time resolution of 80 fs. Kinetic traces at different characteristic X-ray energies were collected to give a global picture of the multistep pathway in the photodissociation of CO from heme. In order to extract the reaction coordinates along different directions of the CO departure, XTA data were collected with parallel and perpendicular relative polarizations of the laser pump and X-ray probe pulse to isolate the contributions of electronic spin state transition, bond breaking, and heme macrocycle nuclear relaxation. The time evolution of the iron K-edge X-ray absorption near edge structure (XANES) features along the two major photochemical reaction coordinates, i.e., the iron(II)-CO bond elongation and the heme macrocycle doming relaxation were modeled by time-dependent density functional theory calculations. Combined results from the experiments and computations reveal insight into interplays between the nuclear and electronic structural dynamics along the CO photodissociation trajectory. Time-resolved small-angle X-ray scattering data during the same process are also simultaneously collected, which show that the local CO dissociation causes a protein quake propagating on different spatial and temporal scales. These studies are important for understanding gas transport and protein deligation processes and shed light on the interplay of active site conformational changes and large-scale protein reorganization.


Asunto(s)
Monóxido de Carbono/química , Simulación de Dinámica Molecular , Mioglobina/química , Animales , Bovinos , Hemo/química , Hemo/metabolismo , Hierro/química , Mioglobina/metabolismo , Unión Proteica
10.
J Chem Theory Comput ; 17(1): 277-289, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33356213

RESUMEN

The block-localized wave function method is useful to provide insights on chemical bonding and intermolecular interactions through energy decomposition analysis. The method relies on block localization of molecular orbitals (MOs) by constraining the orbitals to basis functions within given blocks. Here, a generalized block-localized orbital (GBLO) method is described to allow both physically localized and delocalized MOs to be constrained in orbital-block definitions. Consequently, GBLO optimization can be conveniently tailored by imposing specific constraints. The GBLO method is illustrated by three examples: (1) constrained polarization response orbitals through dipole and quadrupole perturbation in a water dimer complex, (2) the ground and first excited-state potential energy curves of ethene about its C-C bond rotation, and (3) excitation energies of double electron excited states. Multistate density functional theory is used to determine the energies of the adiabatic ground and excited states using a minimal active space (MAS) comprising specifically charge-constrained and excited determinant configurations that are variationally optimized by the GBLO method. We find that the GBLO expansion that includes delocalized MOs in configurational blocks significantly reduces computational errors in comparison with physical block localization, and the computed ground- and excited-state energies are in good accordance with experiments and results obtained from multireference configuration interaction calculations.

11.
J Chem Phys ; 153(22): 224111, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317298

RESUMEN

The recently developed real-time nuclear-electronic orbital (RT-NEO) approach provides an elegant framework for treating electrons and selected nuclei, typically protons, quantum mechanically in nonequilibrium dynamical processes. However, the RT-NEO approach neglects the motion of the other nuclei, preventing a complete description of the coupled nuclear-electronic dynamics and spectroscopy. In this work, the dynamical interactions between the other nuclei and the electron-proton subsystem are described with the mixed quantum-classical Ehrenfest dynamics method. The NEO-Ehrenfest approach propagates the electrons and quantum protons in a time-dependent variational framework, while the remaining nuclei move classically on the corresponding average electron-proton vibronic surface. This approach includes the non-Born-Oppenheimer effects between the electrons and the quantum protons with RT-NEO and between the classical nuclei and the electron-proton subsystem with Ehrenfest dynamics. Spectral features for vibrational modes involving both quantum and classical nuclei are resolved from the time-dependent dipole moments. This work shows that the NEO-Ehrenfest method is a powerful tool to study dynamical processes with coupled electronic and nuclear degrees of freedom.

12.
J Phys Chem A ; 124(47): 9729-9737, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33181013

RESUMEN

Motivated by the uncertainty in our understanding of ultrafast plasmon decay mechanisms, we examine the effect of nuclear vibrations on the dynamical behavior of the strong plasmon-like dipole response of naphthalene, known as the ß peak. The real-time time-dependent density functional (RT-TDDFT) method coupled with Ehrenfest molecular dynamics is used to describe the interconnected nuclear and electronic motion. Several vibrational modes promote drastic plasmon decay in naphthalene. The most astonishing finding of this study is that activation of one particular vibrational mode (corresponding to the B1u representation in D2h point group symmetry) leads to a continuous drop of the dipole response corresponding to the ß peak into a totally symmetric, dark, quadrupolar electronic state. A second B1u mode provokes the sharp plasmon-like peak to split due to the breaking of structural symmetry. Nonadiabatic coupling between a B2g vibrational mode and the ß peak (a B1u electronic state) gives rise to a B3u vibronic state, which can be identified as one of the p-band peaks that reside close in energy to the ß peak energy. Overall, strong nonadiabatic coupling initiates plasmon decay into nearby electronic states in acenes, most importantly into dark states. These findings expand our knowledge about possible plasmon decay processes and pave the way for achieving high optical performance in acene-based materials such as graphene.

13.
J Phys Chem Lett ; 11(22): 9946-9951, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33170721

RESUMEN

The radiolysis of liquid water and the radiation-matter interactions that happen in aqueous environments are important to the fields of chemistry, materials, and environmental sciences, as well as the biological and physiological response to extreme conditions and medical treatments. The initial stage of radiolysis is the ultrafast response, or hole dynamics, that triggers chemical processes within complex energetic landscapes that may include reactivity. A fundamental understanding necessitates the use of theoretical methods that are capable of simulating both ultrafast coherence and non-adiabatic energy transfer pathways. In this work, we carry out an ab initio Ehrenfest dynamics study to provide a more complete description of the ultrafast dynamics and reactive events initiated by photoionization of water. After sudden ionization, a range of processes, including hole trapping and transfer, large OH oscillations, proton transfer and subsequent relay, formation of the metastable Zundel complex, and long-lived coherence, are identified and new insight into their driving forces is elucidated.

14.
J Phys Chem Lett ; 11(10): 4052-4058, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32251589

RESUMEN

The quantum mechanical treatment of both electrons and nuclei is crucial in nonadiabatic dynamical processes such as proton-coupled electron transfer. The nuclear-electronic orbital (NEO) method provides an elegant framework for including nuclear quantum effects beyond the Born-Oppenheimer approximation. To enable the study of nonequilibrium properties, we derive and implement a real-time NEO (RT-NEO) approach based on time-dependent Hatree-Fock or density functional theory, in which the electronic and nuclear degrees of freedom are propagated in a time-dependent variational framework. Nuclear and electronic spectral features can be resolved from the time-dependent dipole moment computed using the RT-NEO method. The test cases show the dynamical interplay between the quantum nuclei and the electrons through vibronic coupling. Moreover, vibrational excitation in the RT-NEO approach is demonstrated by applying a resonant driving field, and electronic excitation is demonstrated by simulating excited state intramolecular proton transfer. This work shows that the RT-NEO approach is a promising tool to study nonadiabatic quantum dynamical processes within a time-dependent variational description for the coupled electronic and nuclear degrees of freedom.

15.
J Chem Theory Comput ; 15(3): 1633-1641, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30689381

RESUMEN

Electron correlation and environmental effects play important roles in electron dynamics and spectroscopic observables of chemical systems in condensed phase. In this paper, we present a time-dependent complete active space configuration interaction (TD-CASCI) approach embedded in a polarizable force field, MMPol. The present implementation of TD-CASCI/MMPol utilizes a direct matrix-vector contraction, allowing studies of large systems. This scheme is used to study the solvatochromic shift of coumarin 153 in methanol. The TD-CASCI/MMPol approach captures the double excitation character in the excited state wave function and accurately predicts the solvatochromic red-shift of coumarin 153 dye within the experimental range, outperforming linear response time-dependent density functional theory. The effect of using different reference orbitals for the TD-CASCI/MMPol simulation is also investigated, highlighting the need for an unbiased treatment of all electronic states in the energy range of interest.

16.
J Chem Theory Comput ; 15(1): 43-51, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30512961

RESUMEN

Hybrid quantum mechanical/molecular mechanical (QM/MM) models are some of the most powerful and computationally feasible approaches to account for solvent effects or more general environmental perturbations on quantum chemical systems. In their more recent formulations (known as polarizable embedding) they can account for electrostatic and mutual polarization effects between the QM and the MM subsystems. In this paper, a polarizable embedding scheme based on induced dipoles that is able both to describe electron evolution of the embedded QM system in an efficient manner as well as to capture the frequency dependent behavior of the solvent is proposed, namely, ωMMPol. The effects of this frequency-dependent solvent on a time-dependent model system-the Rabi oscillations of H2+ in a resonant field-are considered. The solvent is shown to introduce only mild perturbations when the excitation frequencies of the solvent and the solute are off-resonant. However, the dynamics of the H2+ are fundamentally changed in the presence of a near-resonant excitation solvent. The effectiveness of ωMMPol to simulating realistic chemical systems is demonstrated by capturing charge transfer dynamics within a solvated system.

17.
J Phys Chem Lett ; 9(10): 2444-2449, 2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29672058

RESUMEN

Ion pairing within complex solutions and electrolytes is a difficult phenomenon to measure and investigate, yet it has significant impact upon macroscopic processes, such as crystal formation. Traditional methods of detecting and characterizing ion pairing are sensitive to contact ion pairs, may require minimum concentrations that limit applicability, and can have difficulty in characterizing solutions with many components. Because of its element specificity and sensitivity to local environment, X-ray absorption near edge structure (XANES) is a promising tool for investigating ion pairing in complex solutions. In concentrated sodium aluminate solutions, a shift in the pre-edge shoulder correlated to sodium concentration is observed, and the physical origins of that shift are investigated using energy specific time-dependent density functional theory of subensembles obtained from ab initio molecular dynamics. Two transitions are found to contribute to the pre-edge feature, yet they are anticorrelated with respect to the sodium···aluminate distance. Unexpectedly, this causes Al XANES to be an effective probe for longer-range ion interactions than the traditional counterparts of NMR or vibrational spectroscopies. Given the nature of the transitions involved, this observation may be extended to other systems where ion-ion interactions dominate; however, a complete understanding of the contributing transitions is necessary for accurate analysis of XANES pre-edge features in concentrated electrolytes.

18.
J Phys Chem Lett ; 8(21): 5283-5289, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28994290

RESUMEN

Real-time time-dependent density functional theory (RT-TDDFT) is a powerful tool for obtaining spectroscopic observables and understanding complex, time-dependent properties. Currently, performing RT-TDDFT calculations on large, fully quantum mechanical systems is not computationally feasible. Previously, polarizable mixed quantum mechanical and molecular mechanical (QM/MMPol) models have been successful in providing accurate, yet efficient, approximations to a fully quantum mechanical system. Here we develop a coupling scheme between induced dipole based QM/MMPol and RT-TDDFT. Our approach is validated by comparing calculated spectra with both real-time and linear-response TDDFT calculations. The model developed within provides an accurate method for performing RT-TDDFT calculations on extended systems while accounting for mutual polarization between the quantum mechanical and molecular mechanical regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA