Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells ; 41(6): 560-569, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36987811

RESUMEN

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome associated with severe anemia, congenital malformations, and an increased risk of developing cancer. The chromatin-binding special AT-rich sequence-binding protein-1 (SATB1) is downregulated in megakaryocyte/erythroid progenitors (MEPs) in patients and cell models of DBA, leading to a reduction in MEP expansion. Here we demonstrate that SATB1 expression is required for the upregulation of the critical erythroid factors heat shock protein 70 (HSP70) and GATA1 which accompanies MEP differentiation. SATB1 binding to specific sites surrounding the HSP70 genes promotes chromatin loops that are required for the induction of HSP70, which, in turn, promotes GATA1 induction. This demonstrates that SATB1, although gradually downregulated during myelopoiesis, maintains a biological function in early myeloid progenitors.


Asunto(s)
Anemia de Diamond-Blackfan , Proteínas de Unión a la Región de Fijación a la Matriz , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Megacariocitos/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Diferenciación Celular/genética , Factores de Transcripción/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Cromatina/metabolismo , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo
2.
Haematologica ; 108(5): 1222-1231, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36384250

RESUMEN

Diamond-Blackfan anemia (DBA) is a ribosomopathy that is characterized by macrocytic anemia, congenital malformations, and early onset during childhood. Genetic studies have demonstrated that most patients carry mutations in one of the 20 related genes, most of which encode ribosomal proteins (RP). Treatment of DBA includes corticosteroid therapy, chronic red blood cell transfusion, and other forms of immunosuppression. Currently, hematopoietic stem cell transplantation is the only cure for DBA. Interestingly, spontaneous remissions occur in 10-20% of transfusion-dependent DBA patients. However, there is no consistent association between specific mutations and clinical manifestations. In the past decades, researchers have made significant progress in understanding the pathogenesis of DBA, but it remains unclear how the ubiquitous RP haploinsufficiency causes the erythroid-specific defect in hematopoiesis in DBA patients, and why there is a difference in penetrance and spontaneous remission among individuals who carry identical mutations. In this paper, we provide a comprehensive review of the development of DBA animal models and discuss the future research directions for these important experimental systems.


Asunto(s)
Anemia de Diamond-Blackfan , Animales , Anemia de Diamond-Blackfan/genética , Proteínas Ribosómicas/genética , Mutación , Modelos Animales , Hematopoyesis
3.
Exp Hematol ; 111: 66-78, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35460833

RESUMEN

Diamond-Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome that is associated with anemia, congenital anomalies, and cancer predisposition. It is categorized as a ribosomopathy, because more than 80% or patients have haploinsufficiency of either a small or large subunit-associated ribosomal protein (RP). The erythroid pathology is due predominantly to a block and delay in early committed erythropoiesis with reduced megakaryocyte/erythroid progenitors (MEPs). To understand the molecular pathways leading to pathogenesis of DBA, we performed RNA sequencing on mRNA and miRNA from RPS19-deficient human hematopoietic stem and progenitor cells (HSPCs) and compared existing database documenting transcript fluctuations across stages of early normal erythropoiesis. We determined the chromatin regulator, SATB1 was prematurely downregulated through the coordinated action of upregulated miR-34 and miR-30 during differentiation in ribosomal insufficiency. Restoration of SATB1 rescued MEP expansion, leading to a modest improvement in erythroid and megakaryocyte expansion in RPS19 insufficiency. However, SATB1 expression did not affect expansion of committed erythroid progenitors, indicating ribosomal insufficiency affects multiple stages during erythroid differentiation.


Asunto(s)
Anemia de Diamond-Blackfan , Eritropoyesis , Proteínas de Unión a la Región de Fijación a la Matriz , MicroARNs , Anemia de Diamond-Blackfan/patología , Regulación hacia Abajo , Eritropoyesis/genética , Células Madre Hematopoyéticas , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Megacariocitos/citología , MicroARNs/genética , Proteínas Ribosómicas
4.
Genes (Basel) ; 12(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681039

RESUMEN

Blood cell development is regulated through intrinsic gene regulation and local factors including the microenvironment and cytokines. The differentiation of hematopoietic stem and progenitor cells (HSPCs) into mature erythrocytes is dependent on these cytokines binding to and stimulating their cognate receptors and the signaling cascades they initiate. Many of these pathways include kinases that can diversify signals by phosphorylating multiple substrates and amplify signals by phosphorylating multiple copies of each substrate. Indeed, synthesis of many of these cytokines is regulated by a number of signaling pathways including phosphoinositide 3-kinase (PI3K)-, extracellular signal related kinases (ERK)-, and p38 kinase-dependent pathways. Therefore, kinases act both upstream and downstream of the erythropoiesis-regulating cytokines. While many of the cytokines are well characterized, the nuanced members of the network of kinases responsible for appropriate induction of, and response to, these cytokines remains poorly defined. Here, we will examine the kinase signaling cascades required for erythropoiesis and emphasize the importance, complexity, enormous amount remaining to be characterized, and therapeutic potential that will accompany our comprehensive understanding of the erythroid kinome in both healthy and diseased states.


Asunto(s)
Diferenciación Celular/genética , Eritrocitos/citología , Eritropoyesis/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Regulación de la Expresión Génica/genética , Humanos , Sistema de Señalización de MAP Quinasas/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/genética
5.
J Biol Chem ; 297(3): 100988, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34298020

RESUMEN

Nemo-like kinase (NLK) is a member of the mitogen-activated protein kinase family of kinases and shares a highly conserved kinase domain with other mitogen-activated protein kinase family members. The activation of NLK contributes to the pathogenesis of Diamond-Blackfan anemia (DBA), reducing c-myb expression and mechanistic target of rapamycin activity, and is therefore a potential therapeutic target. Unlike other anemias, the hematopoietic effects of DBA are largely restricted to the erythroid lineage. Mutations in ribosomal genes induce ribosomal insufficiency and reduced protein translation, dramatically impacting early erythropoiesis in the bone marrow of patients with DBA. We sought to identify compounds that suppress NLK and increases erythropoiesis in ribosomal insufficiency. We report that the active component of ginseng, ginsenoside Rb1, suppresses NLK expression and improves erythropoiesis in in vitro models of DBA. Ginsenoside Rb1-mediated suppression of NLK occurs through the upregulation of miR-208, which binds to the 3'-UTR of NLK mRNA and targets it for degradation. We also compare ginsenoside Rb1-mediated upregulation of miR-208 with metformin-mediated upregulation of miR-26. We conclude that targeting NLK expression through miRNA binding of the unique 3'-UTR is a viable alternative to the challenges of developing small-molecule inhibitors to target the highly conserved kinase domain of this specific kinase.


Asunto(s)
Anemia de Diamond-Blackfan/patología , Eritropoyesis/efectos de los fármacos , Ginsenósidos/farmacología , Panax/química , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Regiones no Traducidas 3' , Animales , Humanos
6.
Exp Hematol ; 91: 65-77, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32926965

RESUMEN

Diamond-Blackfan anemia (DBA) results from haploinsufficiency of ribosomal protein subunits in hematopoietic progenitors in the earliest stages of committed erythropoiesis. Nemo-like kinase (NLK) is chronically hyperactivated in committed erythroid progenitors and precursors in multiple human and murine models of DBA. Inhibition of NLK activity and suppression of NLK expression both improve erythroid expansion in these models. Metformin is a well-tolerated drug for type 2 diabetes with multiple cellular targets. Here we demonstrate that metformin improves erythropoiesis in human and zebrafish models of DBA. Our data indicate that the effects of metformin on erythroid proliferation and differentiation are mediated by suppression of NLK expression through induction of miR-26a, which recognizes a binding site within the NLK 3' untranslated region (3'UTR) to facilitate transcript degradation. We propose that induction of miR-26a is a potentially novel approach to treatment of DBA and could improve anemia in DBA patients without the potentially adverse side effects of metformin in a DBA patient population.


Asunto(s)
Anemia de Diamond-Blackfan/tratamiento farmacológico , Eritropoyesis/efectos de los fármacos , Hematínicos/uso terapéutico , Metformina/uso terapéutico , MicroARNs/biosíntesis , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Regiones no Traducidas 3'/genética , Anemia de Diamond-Blackfan/genética , Animales , Células Cultivadas , Ensayo de Unidades Formadoras de Colonias , Modelos Animales de Enfermedad , Eritropoyesis/genética , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Hematínicos/farmacología , Humanos , Metformina/farmacología , MicroARNs/genética , Estabilidad del ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Regulación hacia Arriba/efectos de los fármacos , Pez Cebra
7.
Blood Adv ; 3(18): 2751-2763, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31540902

RESUMEN

The del(5q) myelodysplastic syndrome (MDS) is a distinct subtype of MDS, associated with deletion of the ribosomal protein S14 (RPS14) gene that results in macrocytic anemia. This study sought to identify novel targets for the treatment of patients with del(5q) MDS by performing an in vivo drug screen using an rps14-deficient zebrafish model. From this, we identified the secreted gelatinase matrix metalloproteinase 9 (MMP9). MMP9 inhibitors significantly improved the erythroid defect in rps14-deficient zebrafish. Similarly, treatment with MMP9 inhibitors increased the number of colony forming unit-erythroid colonies and the CD71+ erythroid population from RPS14 knockdown human BMCD34+ cells. Importantly, we found that MMP9 expression is upregulated in RPS14-deficient cells by monocyte chemoattractant protein 1. Double knockdown of MMP9 and RPS14 increased the CD71+ population compared with RPS14 single knockdown, suggesting that increased expression of MMP9 contributes to the erythroid defect observed in RPS14-deficient cells. In addition, transforming growth factor ß (TGF-ß) signaling is activated in RPS14 knockdown cells, and treatment with SB431542, a TGF-ß inhibitor, improved the defective erythroid development of RPS14-deficient models. We found that recombinant MMP9 treatment decreases the CD71+ population through increased SMAD2/3 phosphorylation, suggesting that MMP9 directly activates TGF-ß signaling in RPS14-deficient cells. Finally, we confirmed that MMP9 inhibitors reduce SMAD2/3 phosphorylation in RPS14-deficient cells to rescue the erythroid defect. In summary, these study results support a novel role for MMP9 in the pathogenesis of del(5q) MDS and the potential for the clinical use of MMP9 inhibitors in the treatment of patients with del(5q) MDS.


Asunto(s)
Eritropoyesis/fisiología , Metaloproteinasa 9 de la Matriz/metabolismo , Factor de Crecimiento Transformador beta/genética , Humanos
8.
Mol Genet Metab ; 122(3): 28-38, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28757239

RESUMEN

The role of non-coding Ribonucleic Acids (ncRNAs) in biology is currently an area of intense focus. Hematopoiesis requires rapidly changing regulatory molecules to guide appropriate differentiation and ncRNA are well suited for this. It is not surprising that virtually all aspects of hematopoiesis have roles for ncRNAs assigned to them and doubtlessly much more await characterization. Stem cell maintenance, lymphoid, myeloid and erythroid differentiation are all regulated by various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and various transposable elements within the genome. As our understanding of the many and complex ncRNA roles continues to grow, new discoveries are challenging the existing classification schemes. In this review we briefly overview the broad categories of ncRNAs and discuss a few examples regulating normal and aberrant hematopoiesis.


Asunto(s)
Hematopoyesis/genética , ARN Mensajero/genética , ARN no Traducido/clasificación , Animales , Elementos Transponibles de ADN/genética , Células Eritroides/metabolismo , Regulación de la Expresión Génica , Genoma Humano , Humanos , Ratones , MicroARNs/genética , ARN no Traducido/genética , Células Madre/fisiología
9.
Mol Biol Cell ; 26(21): 3879-91, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26337383

RESUMEN

Transforming growth factor ß (TGFß) is a pleiotropic protein secreted from essentially all cell types and primary tissues. While TGFß's actions reflect the activity of a number of signaling networks, the primary mediator of TGFß responses are the Smad proteins. Following receptor activation, these cytoplasmic proteins form hetero-oligomeric complexes that translocate to the nucleus and affect gene transcription. Here, through biological, biochemical, and immunofluorescence approaches, sorting nexin 9 (SNX9) is identified as being required for Smad3-dependent responses. SNX9 interacts with phosphorylated (p) Smad3 independent of Smad2 or Smad4 and promotes more rapid nuclear delivery than that observed independent of ligand. Although SNX9 does not bind nucleoporins Nup153 or Nup214 or some ß importins (Imp7 or Impß), it mediates the association of pSmad3 with Imp8 and the nuclear membrane. This facilitates nuclear translocation of pSmad3 but not SNX9.


Asunto(s)
Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Transporte Activo de Núcleo Celular , Animales , Técnicas de Cultivo de Célula , Núcleo Celular/metabolismo , Humanos , Carioferinas/metabolismo , Ligandos , Ratones , Proteínas de Complejo Poro Nuclear/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Proteínas Smad/metabolismo , Proteína Smad4/metabolismo , Transactivadores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
10.
FASEB J ; 27(11): 4444-54, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23913859

RESUMEN

Transforming growth factor ß (TGFß) has significant profibrotic activity both in vitro and in vivo. This reflects its capacity to stimulate fibrogenic mediators and induce the expression of other profibrotic cytokines such as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF/ErbB) ligands. Here we address both the mechanisms by which TGFß induced ErbB ligands and the physiological significance of inhibiting multiple TGFß-regulated processes. The data document that ErbB ligand induction requires PDGF receptor (PDGFR) mediation and engages a positive autocrine/paracrine feedback loop via ErbB receptors. Whereas PDGFRs are essential for TGFß-stimulated ErbB ligand up-regulation, TGFß-specific signals are also required for ErbB receptor activation. Subsequent profibrotic responses are shown to involve the cooperative action of PDGF and ErbB signaling. Moreover, using a murine treatment model of bleomycin-induced pulmonary fibrosis we found that inhibition of TGFß/PDGF and ErbB pathways with imatinib plus lapatinib, respectively, not only prevented myofibroblast gene expression to a greater extent than either drug alone, but also essentially stabilized gas exchange (oxygen saturation) as an overall measure of lung function. These observations provide important mechanistic insights into profibrotic TGFß signaling and indicate that targeting multiple cytokines represents a possible strategy to ameliorate organ fibrosis dependent on TGFß.


Asunto(s)
Receptores ErbB/metabolismo , Fibrosis Pulmonar/metabolismo , Receptor ErbB-2/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Benzamidas/administración & dosificación , Benzamidas/uso terapéutico , Bleomicina/toxicidad , Línea Celular , Interacciones Farmacológicas , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Retroalimentación Fisiológica , Mesilato de Imatinib , Lapatinib , Pulmón/fisiopatología , Ratones , Miofibroblastos/metabolismo , Comunicación Paracrina , Piperazinas/administración & dosificación , Piperazinas/uso terapéutico , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Intercambio Gaseoso Pulmonar , Pirimidinas/administración & dosificación , Pirimidinas/uso terapéutico , Quinazolinas/administración & dosificación , Quinazolinas/uso terapéutico , Regulación hacia Arriba
11.
Mol Biol Cell ; 24(14): 2285-98, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23720763

RESUMEN

Transforming growth factor ß (TGF-ß) is critical for the development and maintenance of epithelial structures. Because receptor localization and trafficking affect the cellular and organismal response to TGF-ß, the present study was designed to address how such homeostatic control is regulated. To that end, we identify a new role for the mammalian retromer complex in maintaining basolateral plasma membrane expression of the type II TGF-ß receptor (TßRII). Retromer and TßRII associate in the presence or absence of TGF-ß ligand. After retromer knockdown, although TßRII internalization and trafficking to a Rab5-positive compartment occur as in wild-type cells, receptor recycling is inhibited. This results in TßRII mislocalization from the basolateral to both the basolateral and apical plasma membranes independent of Golgi transit and the Rab11-positive apical recycling endosome. The data support a model in which, after initial basolateral TßRII delivery, steady-state polarized TßRII expression is maintained by retromer/TßRII binding and delivery to the common recycling endosome.


Asunto(s)
Membrana Celular/metabolismo , Endosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Polaridad Celular , Perros , Regulación de la Expresión Génica , Humanos , Células de Riñón Canino Madin Darby , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
12.
J Biol Chem ; 286(20): 17841-50, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454615

RESUMEN

TGF-ß modulates numerous diverse cellular phenotypes including growth arrest in epithelial cells and proliferation in fibroblasts. Although the Smad pathway is fundamental for the majority of these responses, recent evidence indicates that non-Smad pathways may also have a critical role. Here we report a novel mechanism whereby the nonreceptor tyrosine focal adhesion kinase (FAK) functions as an adaptor necessary for cell type-specific responses to TGF-ß. We show that in contrast to Smad actions, non-Smad pathways, including c-Abl, PAK2, and Akt, display an obligate requirement for FAK. Interestingly, this occurs in Src null SYF cells and is independent of FAK tyrosine phosphorylation, kinase activity, and/or proline-rich sequences in the C-terminal FAT domain. FAK binds the phosphatidylinositol 3-kinase (PI3K) p85 regulatory subunit following TGF-ß treatment in a subset of fibroblasts but not epithelial cells and has an obligate role in TGF-ß-stimulated anchorage-independent growth and migration. Together, these results uncover a new scaffolding role for FAK as the most upstream component regulating the profibrogenic action of TGF-ß and suggest that inhibiting this interaction may be useful in treating a number of fibrotic diseases.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Perros , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Quinasa 1 de Adhesión Focal/genética , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteínas Smad , Células 3T3 Swiss , Factor de Crecimiento Transformador beta/genética
13.
Mol Biol Cell ; 21(22): 4009-19, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20881059

RESUMEN

Transforming growth factor (TGF)-ß family proteins form heteromeric complexes with transmembrane serine/threonine kinases referred to as type I and type II receptors. Ligand binding initiates a signaling cascade that generates a variety of cell type-specific phenotypes. Whereas numerous studies have investigated the regulatory activities controlling TGF-ß signaling, there is relatively little information addressing the endocytic and trafficking itinerary of TGF-ß receptor subunits. In the current study we have investigated the role of the clathrin-associated sorting protein Disabled-2 (Dab2) in TGF-ß receptor endocytosis. Although small interfering RNA-mediated Dab2 knockdown had no affect on the internalization of various clathrin-dependent (i.e., TGF-ß, low-density lipoprotein, or transferrin) or -independent (i.e., LacCer) cargo, TGF-ß receptor recycling was abrogated. Loss of Dab2 resulted in enlarged early endosomal antigen 1-positive endosomes, reflecting the inability of cargo to traffic from the early endosome to the endosomal recycling compartment and, as documented previously, diminished Smad2 phosphorylation. The results support a model whereby Dab2 acts as a multifunctional adaptor in mesenchymal cells required for TGF-ß receptor recycling as well as Smad2 phosphorylation.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Endocitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Proteínas Reguladoras de la Apoptosis , Western Blotting , Células COS , Chlorocebus aethiops , Endosomas/metabolismo , Ratones , Microscopía Fluorescente , Mutación , Células 3T3 NIH , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas , Interferencia de ARN , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Proteína Smad2/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo
14.
Cancer Res ; 70(19): 7421-30, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20841477

RESUMEN

Engagement of the transforming growth factor-ß (TGF-ß) receptor complex activates multiple signaling pathways that play crucial roles in both health and disease. TGF-ß is a key regulator of fibrogenesis and cancer-associated desmoplasia; however, its exact mode of action in these pathologic processes has remained poorly defined. Here, we report a novel mechanism whereby signaling via members of the ERBB or epidermal growth factor family of receptors serves as a central requirement for the biological responses of fibroblasts to TGF-ß. We show that TGF-ß triggers upregulation of ERBB ligands and activation of cognate receptors via the canonical SMAD pathway in fibroblasts. Interestingly, activation of ERBB is commonly observed in a subset of fibroblast but not epithelial cells from different species, indicating cell type specificity. Moreover, using genetic and pharmacologic approaches, we show that ERBB activation by TGF-ß is essential for the induction of fibroblast cell morphologic transformation and anchorage-independent growth. Together, these results uncover important aspects of TGF-ß signaling that highlight the role of ERBB ligands/receptors as critical mediators in fibroblast responses to this pleiotropic cytokine.


Asunto(s)
Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Proteínas Oncogénicas v-erbB/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Adhesión Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Línea Celular , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Perros , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Ratones , Transducción de Señal , Proteínas Smad/metabolismo , Células 3T3 Swiss , Factor de Crecimiento Transformador beta/metabolismo
15.
Am J Physiol Renal Physiol ; 298(1): F142-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19846571

RESUMEN

Renal interstitial fibrosis is a major determinant of renal failure in the majority of chronic renal diseases. Transforming growth factor-beta (TGF-beta) is the single most important cytokine promoting renal fibrogenesis. Recent in vitro studies identified novel non-smad TGF-beta targets including p21-activated kinase-2 (PAK2), the abelson nonreceptor tyrosine kinase (c-Abl), and the mammalian target of rapamycin (mTOR) that are activated by TGF-beta in mesenchymal cells, specifically in fibroblasts but less in epithelial cells. In the present studies, we show that non-smad effectors of TGF-beta including PAK2, c-Abl, Akt, tuberin (TSC2), and mTOR are activated in experimental unilateral obstructive nephropathy in rats. Treatment with c-Abl or mTOR inhibitors, imatinib mesylate and rapamycin, respectively, each blocks noncanonical (non-smad) TGF-beta pathways in the kidney in vivo and diminishes the number of interstitial fibroblasts and myofibroblasts as well as the interstitial accumulation of extracellular matrix proteins. These findings indicate that noncanonical TGF-beta pathways are activated during the early and rapid renal fibrogenesis of obstructive nephropathy. Moreover, the current findings suggest that combined inhibition of key regulators of these non-smad TGF-beta pathways even in dose-sparing protocols are effective treatments in renal fibrogenesis.


Asunto(s)
Enfermedades Renales/metabolismo , Riñón/metabolismo , Riñón/patología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Benzamidas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fibroblastos/patología , Fibrosis , Mesilato de Imatinib , Enfermedades Renales/etiología , Enfermedades Renales/patología , Masculino , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley , Sirolimus/farmacología , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Obstrucción Ureteral/complicaciones
16.
Dev Cell ; 16(3): 433-44, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19289088

RESUMEN

Transforming growth factor beta (TGF-beta) family ligands are pleotropic proteins with diverse cell-type-specific effects on growth and differentiation. For example, PAK2 activation is critical for the proliferative/profibrotic action of TGF-beta on mesenchymal cells, and yet it is not responsive to TGF-beta in epithelial cells. We therefore investigated the regulatory constraints that prevent inappropriate PAK2 activation in epithelial cultures. The results show that the epithelial-enriched protein Erbin controls the function of the NF2 tumor suppressor Merlin by determining the output of Merlin's physical interactions with active PAK2. Whereas mesenchymal TGF-beta signaling induces PAK2-mediated inhibition of Merlin function in the absence of Erbin, Erbin/Merlin complexes bind and inactivate GTPase-bound PAK2 in epithelia. These results not only identify Erbin as a key determinant of epithelial resistance to TGF-beta signaling, they also show that Erbin controls Merlin tumor suppressor function by switching the functional valence of PAK2 binding.


Asunto(s)
Proteínas Portadoras/metabolismo , Neurofibromina 2/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Quinasas p21 Activadas/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Ratones , Modelos Biológicos , Neurofibromina 2/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/genética , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
17.
Cancer Res ; 69(1): 84-93, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19117990

RESUMEN

Transforming growth factor-beta (TGF-beta) promotes a multitude of diverse biological processes, including growth arrest of epithelial cells and proliferation of fibroblasts. Although the TGF-beta signaling pathways that promote inhibition of epithelial cell growth are well characterized, less is known about the mechanisms mediating the positive response to this growth factor. Given that TGF-beta has been shown to promote fibrotic diseases and desmoplasia, identifying the fibroblast-specific TGF-beta signaling pathways is critical. Here, we investigate the role of mammalian target of rapamycin (mTOR), a known effector of phosphatidylinositol 3-kinase (PI3K) and promoter of cell growth, in the fibroblast response to TGF-beta. We show that TGF-beta activates mTOR complex 1 (mTORC1) in fibroblasts but not epithelial cells via a PI3K-Akt-TSC2-dependent pathway. Rapamycin, the pharmacologic inhibitor of mTOR, prevents TGF-beta-mediated anchorage-independent growth without affecting TGF-beta transcriptional responses or extracellular matrix protein induction. In addition to mTORC1, we also examined the role of mTORC2 in TGF-beta action. mTORC2 promotes TGF-beta-induced morphologic transformation and is required for TGF-beta-induced Akt S473 phosphorylation but not mTORC1 activation. Interestingly, both mTOR complexes are necessary for TGF-beta-mediated growth in soft agar. These results define distinct and overlapping roles for mTORC1 and mTORC2 in the fibroblast response to TGF-beta and suggest that inhibitors of mTOR signaling may be useful in treating fibrotic processes, such as desmoplasia.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Perros , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/metabolismo
18.
Cancer Res ; 67(8): 3673-82, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17440079

RESUMEN

Transforming growth factor beta (TGF-beta) signaling via Smad proteins occurs in various cell types. However, whereas the biological response to TGF-beta can be as distinct as growth promoting (i.e., mesenchymal cells) versus growth inhibiting (i.e., epithelial cells), few discernible differences in TGF-beta signaling have been reported. In the current study, we examined the role of Ras in the proliferative response to TGF-beta and how it might interface with Smad-dependent and Smad-independent TGF-beta signaling targets. TGF-beta stimulated Ras activity in a subset of mesenchymal, but not epithelial, cultures and was required for extracellular signal-regulated kinase (ERK)-dependent transcriptional responses. Although dominant negative Ras had no effect on TGF-beta internalization or Smad-dependent signaling (i.e., phosphorylation, nuclear translocation, or SBE-luciferase activity), it did prevent the hyperphosphorylation of the Smad transcriptional corepressor TG-interacting factor (TGIF). This was not sufficient, however, to overcome the mitogenic response stimulated by TGF-beta, which was dependent on signals downstream of p21-activated kinase 2 (PAK2). Moreover, although the initial activation of Ras and PAK2 are distinctly regulated, TGF-beta-stimulated PAK2 activity is required for Ras-dependent ERK phosphorylation and Elk-1 transcription. These findings show the requirement for crosstalk between two Smad-independent pathways in regulating TGF-beta proliferation and indicate that the mechanism(s) by which TGF-beta stimulates growth is not simply the opposite of its growth inhibitory actions.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Activación Transcripcional/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas ras/metabolismo , Animales , Procesos de Crecimiento Celular/fisiología , Perros , Activación Enzimática , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/metabolismo , Células HeLa , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células 3T3 NIH , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/farmacología , Quinasas p21 Activadas
19.
J Biol Chem ; 281(38): 27846-54, 2006 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-16867995

RESUMEN

Transforming growth factor beta (TGF-beta) modulates a number of cellular phenotypes as divergent as growth stimulation and growth inhibition. Although the Smad pathway is critical for many of these responses, recent evidence indicates that Smad-independent pathways may also have a critical role. One such protein previously shown to regulate TGF-beta action independent of the Smad proteins is the c-Abl nonreceptor tyrosine kinase. In the current study we determined that TGF-beta receptor signaling activates c-Abl kinase activity in a subset of fibroblast but not epithelial cultures. This cell type-specific response occurs in a membrane-proximal locale independent of receptor internalization and upstream of dynamin action. Although c-Abl activation by TGF-beta is independent of Smad2 or Smad3, it is prevented by inhibitors of phosphatidylinositol 3-kinase or PAK2. Thus, c-Abl represents a target downstream of phosphatidylinositol 3-kinase-activated PAK2, which differentiates TGF-beta signaling in fibroblasts and epithelial cell lines and integrates serine/threonine receptor kinases with tyrosine kinase pathways.


Asunto(s)
Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Fibroblastos/metabolismo , Humanos , Mesodermo/metabolismo , Ratones , Células 3T3 NIH , Fosforilación , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Quinasas p21 Activadas
20.
Cancer Res ; 65(22): 10431-40, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16288034

RESUMEN

Transforming growth factor-beta (TGF-beta) stimulates cellular proliferation and transformation to a myofibroblast phenotype in vivo and in a subset of fibroblast cell lines. As the Smad pathway is activated by TGF-beta in essentially all cell types, it is unlikely to be the sole mediator of cell type-specific outcomes to TGF-beta stimulation. In the current study, we determined that TGF-beta receptor signaling activates phosphatidylinositol 3-kinase (PI3K) in several fibroblast but not epithelial cultures independently of Smad2 and Smad3. PI3K activation occurs in the presence of dominant-negative dynamin and is required for p21-activated kinase-2 kinase activity and the increased proliferation and morphologic change induced by TGF-beta in vitro.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Animales , Procesos de Crecimiento Celular/efectos de los fármacos , Procesos de Crecimiento Celular/fisiología , Activación Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Ratones , Fosforilación , Quinasas p21 Activadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...