Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmacol Res Perspect ; 5(1): e00281, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28596833

RESUMEN

Dasotraline is a dopamine and norepinephrine reuptake inhibitor, and the early clinical trials show a slow absorption and long elimination half-life. To investigate the absorption, distribution, metabolism, and excretion of dasotraline in humans, a single dose of [14C]-dasotraline was administered to eight healthy male adult volunteers. At 35 days, 90.7% of the dosed radioactivity was recovered in the urine (68.3%) and feces (22.4%). The major metabolic pathways involved were: (1) amine oxidation to form oxime M41 and sequential sulfation to form M42 or glucuronidation to form M43; (2) N-hydroxylation and sequential glucuronidation to form M35; (3) oxidative deamination to form (S)-tetralone; (4) mono-oxidation of (S)-tetralone and sequential glucuronidation to form M31A and M32; and (5) N-acetylation to form (1R,4S)-acetamide M102. A total of 8 metabolites were detected and structurally elucidated with 4 in plasma (M41, M42, M43, and M35), 7 in urine (M41, M42, M43, M31A, M32, M35, and (S)-tetralone), and 3 in feces (M41, (S)-tetralone, and (1R,4S)-acetamide). The 2 most abundant circulating metabolites were sulfate (M42) and glucuronide (M43) conjugates of the oxime of dasotraline, accounting for 60.1% and 15.0% of the total plasma radioactivity, respectively; unchanged dasotraline accounted for 8.59%. The oxime M41 accounted for only 0.62% of the total plasma radioactivity and was detected only at early time points. M35 was a minor glucuronide metabolite, undetectable by radioactivity but identified by mass spectrometry. The results demonstrate that dasotraline was slowly absorbed, and extensively metabolized by oxidation and subsequent phase II conjugations. The findings from this study also demonstrated that metabolism of dasotraline by humans did not produce metabolites that may cause a safety concern.

3.
Pulm Pharmacol Ther ; 15(2): 135-45, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12090787

RESUMEN

Racemic beta(2) agonists, composed of equal amounts of (R)- and (S)-isomers, can display anomalous actions that compromise their effectiveness as asthma therapies. Loss of efficacy during regular use is characteristic of isoprenaline, albuterol and terbutaline and has in part been attributed to the biological effects of the (S)-isomer. This hypothesis was applied to the (R,R)- and (S,S)-isomers of formoterol. (R,R)-formoterol had 1000-times greater affinity (2.9 nm) to the human beta(2) adrenoceptor than (S,S)-formoterol (3100 nm), with receptor binding modulating intracellular cAMP levels. The minimum lethal intravenous (IV) dose was determined to be 100 mg/kg for (R,R)- and 50 mg/kg for (S,S)-formoterol, suggesting that the toxicity of (S,S)-formoterol may not be related to the binding of beta(2) adrenoceptors. In tissues pretreated with (S,S)-formoterol but not with (R,R)- or racemic formoterol contractions to high concentrations of carbachol were exaggerated. In vivo experiments with sensitized guinea pigs demonstrated that (R,R)-formoterol inhibited both histamine and antigen-induced bronchoconstriction with greater potency than (R,R/S,S)-formoterol while (S,S)-formoterol was ineffective. Metabolic radiolabeling experiments of (R,R)-, (S,S)- or (R,R/S,S)-formoterol with crude human liver phenolsulfotransferase (PST) determined the V(max)/K(m) values to be (0.151), (0.74) and (0.143), respectively. The reciprocal plot illustrates a 2-fold reduction in sulfation rate when (R,R)-formoterol is present as a single isomer. The data presented here suggest that (R,R)-formoterol binds to the beta(2) adrenoceptor and inhibits the contraction of bronchial tissues by spasmogens. However, (S,S)-formoterol exhibits properties inconsistent as an asthma therapeutic and may antagonize the actions of (R,R)-formoterol.


Asunto(s)
Agonistas Adrenérgicos beta/toxicidad , Etanolaminas/toxicidad , Músculo Liso/efectos de los fármacos , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Etanolaminas/metabolismo , Femenino , Fumarato de Formoterol , Cobayas , Humanos , Masculino , Contracción Muscular/efectos de los fármacos , Ratas , Receptores Adrenérgicos beta/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad , Tráquea/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA