Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 349: 140895, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070608

RESUMEN

Rare earth elements (REEs) are increasingly used in a wide range of applications. However, their toxicokinetic behaviors in animals and humans are not yet fully documented, hindering health risk assessments. We used a rat experimental model to provide novel data on the toxicokinetics of the insoluble oxide forms of praseodymium (Pr), neodymium (Nd), cerium (Ce) and yttrium (Y) administered intravenously. Detailed blood, urinary and fecal time courses were documented through serial sampling over 21 days in male Sprague-Dawley rats exposed to a mixture of these REE oxides administered at two different doses (0.3 or 1 mg kg-1 bw of each REE oxide commercially sold as bulk µm-sized particles). Tissue REE levels at the time of sacrifice were also measured. Significant effects of the dose on REE time courses in blood and on cumulative urinary and fecal excretion rates were observed for all four REE oxides assessed, as lower cumulative excretion rates were noted at the higher REE dose. In the liver, the main accumulation organ, the fraction of the administered REE dose remaining in the tissue at necropsy was similar at both doses. Toxicokinetic data for the REE oxides were compared to similar data for their chloride salts (also administered intravenously in a mixture, at 0.3 and 1 mg kg-1 bw of each REE chloride) obtained from a previous study. Compared to their chloride counterparts, faster elimination of REE oxides from the blood was observed in the first hours post-dosing. Furthermore, higher mean residence time (MRT) values as well as slower cumulative urinary and fecal excretion were determined for the REE oxides. Also, while liver REE retention was similar for both REE forms, the fractions of the administered REEs recovered in the spleen and lungs were noticeably higher for the REE oxides, at both dose levels. This study highlights the importance of both the dose and form of the administered REEs on their toxicokinetic profiles. Results indicate that chronic exposure and increased doses of REEs may favor bioaccumulation in the body, in particular for insoluble oxide forms of REEs, which are eliminated more slowly from the body.


Asunto(s)
Metales de Tierras Raras , Óxidos , Humanos , Masculino , Ratas , Animales , Óxidos/toxicidad , Toxicocinética , Cloruros , Ratas Sprague-Dawley , Metales de Tierras Raras/toxicidad
2.
Nanomaterials (Basel) ; 13(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513060

RESUMEN

The increased use of silica and silicon-containing nanoparticles (Si-NP) in agricultural applications has stimulated interest in determining their potential migration in the environment and their uptake by living organisms. Understanding the fate and behavior of Si-NPs will require their accurate analysis and characterization in very complex environmental matrices. In this study, we investigated Si-NP analysis in soil using single-particle ICP-MS. A magnetic sector instrument was operated at medium resolution to overcome the impact of polyatomic interferences (e.g., 14N14N and 12C16O) on 28Si determinations. Consequently, a size detection limit of 29 ± 3 nm (diameter of spherical SiO2 NP) was achieved in Milli-Q water. Si-NP were extracted from agricultural soil using several extractants, including Ca(NO3)2, Mg(NO3)2, BaCl2, NaNO3, Na4P2O7, fulvic acid (FA) and Na2H2EDTA. The best extraction efficiency was found for Na4P2O7, for which the size distribution of Si-NP in the leachates was well preserved for at least one month. On the other hand, Ca(NO3)2, Mg(NO3)2 and BaCl2 were relatively less effective and generally led to particle agglomeration. A time-of-flight ICP-MS was also used to examine the nature of the extracted Si-NP on a single-particle basis. Aluminosilicates accounted for the greatest number of extracted NP (~46%), followed by NP where Si was the only detected metal (presumably SiO2, ~30%).

3.
Molecules ; 28(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298916

RESUMEN

The regulation and characterization of nanomaterials in foods are of great interest due to the potential risks associated with their exposure and the increasing number of applications where they are used within the food industry. One factor limiting the scientifically rigorous regulation of nanoparticles in foods is the lack of standardized procedures for the extraction of nanoparticles (NPs) from complex matrices without alteration of their physico-chemical properties. To this end, we tested and optimized two sample preparation approaches (enzymatic- and alkaline-based hydrolyses) in order to extract 40 nm of Ag NP, following their equilibration with a fatty ground beef matrix. NPs were characterized using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Fast sample processing times (<20 min) were achieved using ultrasonication to accelerate the matrix degradation. NP losses during the sample preparation were minimized by optimizing the choice of enzymes/chemicals, the use of surfactants, and the product concentration and sonication. The alkaline approach using TMAH (tetramethylammonium hydroxide) was found to have the highest recoveries (over 90%); however, processed samples were found to be less stable than the samples processed using an enzymatic digestion based upon pork pancreatin and lipase (≈60 % recovery). Low method detection limits (MDLs) of 4.8 × 106 particles g-1 with a size detection limit (SDL) of 10.9 nm were achieved for the enzymatic extraction whereas an MDL of 5.7 × 107 particles g-1 and an SDL of 10.5 nm were obtained for the alkaline hydrolysis.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Bovinos , Nanopartículas del Metal/química , Espectrometría de Masas/métodos , Plata/química , Análisis Espectral , Nanopartículas/química , Lipasa/química , Tamaño de la Partícula
4.
J Sci Food Agric ; 103(14): 6780-6789, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37357569

RESUMEN

BACKGROUND: Nanoencapsulation has opened promising fields of innovation for pesticides. Conventional pesticides can cause side effects on plant metabolism. To date, the effect of nanoencapsulated pesticides on plant phenolic contents has not been reported. RESULTS: In this study, a comparative evaluation of the phenolic contents and metabolic profiles of strawberries was performed for plants grown under controlled field conditions and treated with two separate active ingredients, azoxystrobin and bifenthrin, loaded into two different types of nanocarriers (Allosperse® polymeric nanoparticles and SiO2 nanoparticles). There were small but significant decreases of the total phenolic content (9%) and pelargonidin 3-glucoside content (6%) in strawberries treated with the nanopesticides. An increase of 31% to 125% was observed in the levels of gallic acid, quercetin, and kaempferol in the strawberries treated with the nanoencapsulated pesticides compared with the conventional treatments. The effects of the nanocarriers on the metabolite and phenolic profiles was identified by principal component analysis. CONCLUSION: Overall, even though the effects of nanopesticides on the phenological parameters of strawberry plants were not obvious, there were significant changes to the plants at a molecular level. In particular, nanocarriers had some subtle effects on plant health and fruit quality through variations in total and individual phenolics in the fruits. Further research will be needed to assess the impact of diverse nanopesticides on other groups of plant metabolites. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

5.
N Am Spine Soc J ; 13: 100191, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36590450

RESUMEN

Cells take in, consume, and synthesize nutrients for numerous physiological functions. This includes not only energy production but also macromolecule biosynthesis, which will further influence cellular signaling, redox homeostasis, and cell fate commitment. Therefore, alteration in cellular nutrient metabolism is associated with pathological conditions. Intervertebral discs, particularly the nucleus pulposus (NP), are avascular and exhibit unique metabolic preferences. Clinical and preclinical studies have indicated a correlation between intervertebral degeneration (IDD) and systemic metabolic diseases such as diabetes, obesity, and dyslipidemia. However, a lack of understanding of the nutrient metabolism of NP cells is masking the underlying mechanism. Indeed, although previous studies indicated that glucose metabolism is essential for NP cells, the downstream metabolic pathways remain unknown, and the potential role of other nutrients, like amino acids and lipids, is understudied. In this literature review, we summarize the current understanding of nutrient metabolism in NP cells and discuss other potential metabolic pathways by referring to a human NP transcriptomic dataset deposited to the Gene Expression Omnibus, which can provide us hints for future studies of nutrient metabolism in NP cells and novel therapies for IDD.

6.
Bone Rep ; 17: 101636, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36389627

RESUMEN

Mesenchymal stromal cells (MSCs) have been utilized in cell therapy for various diseases. Recent studies have demonstrated that extracellular vesicles (EVs) released by MSCs play an important role in their therapeutic activities. EVs contain a variety of bioactive molecules such as proteins, messenger RNAs (mRNAs), and micro RNAs (miRNAs) and modify the function of the recipient cells by transferring these molecules. Despite the promising potential of EV therapy as a substitute for MSC therapy, there are challenges that need to be addressed for the clinical success of EV therapy. EV quality has been shown to vary from batch to batch and preparation to preparation. As the consistency and reproducibility of therapeutic effects rely on the quality of EVs, it is necessary to establish techniques to manufacture scalable amounts of EVs with the same quality. In this manuscript, we discuss the potential factors that affect EV quality. We then introduce pre-clinical studies of EV therapy for bone/cartilage diseases such as osteoarthritis, rheumatoid arthritis, and osteoporosis.

7.
Bone Rep ; 17: 101616, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36105852

RESUMEN

Endochondral bone formation is an important pathway in fracture healing, involving the formation of a cartilaginous soft callus and the process of cartilage-to-bone transition. Failure or delay in the cartilage-to-bone transition causes an impaired bony union such as nonunion or delayed union. During the healing process, multiple types of cells including chondrocytes, osteoprogenitors, osteoblasts, and endothelial cells coexist in the callus, and inevitably crosstalk with each other. Hypertrophic chondrocytes located between soft cartilaginous callus and bony hard callus mediate the crosstalk regulating cell-matrix degradation, vascularization, osteoclast recruitment, and osteoblast differentiation in autocrine and paracrine manners. Furthermore, hypertrophic chondrocytes can become osteoprogenitors and osteoblasts, and directly contribute to woven bone formation. In this review, we focus on the roles of hypertrophic chondrocytes in fracture healing and dissect the intermingled crosstalk in fracture callus during the cartilage-to-bone transition.

8.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34990412

RESUMEN

Short stature is a major skeletal phenotype in osteogenesis imperfecta (OI), a genetic disorder mainly caused by mutations in genes encoding type I collagen. However, the underlying mechanism is poorly understood, and no effective treatment is available. In OI mice that carry a G610C mutation in COL1A2, we previously found that mature hypertrophic chondrocytes (HCs) are exposed to cell stress due to accumulation of misfolded mutant type I procollagen in the endoplasmic reticulum (ER). By fate mapping analysis of HCs in G610C OI mice, we found that HCs stagnate in the growth plate, inhibiting translocation of HC descendants to the trabecular area and their differentiation to osteoblasts. Treatment with 4-phenylbutyric acid (4PBA), a chemical chaperone, restored HC ER structure and rescued this inhibition, resulting in enhanced longitudinal bone growth in G610C OI mice. Interestingly, the effects of 4PBA on ER dilation were limited in osteoblasts, and the bone fragility was not ameliorated. These results highlight the importance of targeting HCs to treat growth deficiency in OI. Our findings demonstrate that HC dysfunction induced by ER disruption plays a critical role in the pathogenesis of OI growth deficiency, which lays the foundation for developing new therapies for OI.


Asunto(s)
Condrocitos/metabolismo , Condrogénesis/genética , Colágeno Tipo I/genética , Mutación , Osteogénesis Imperfecta/tratamiento farmacológico , Animales , Proliferación Celular , Condrocitos/efectos de los fármacos , Condrocitos/patología , Condrogénesis/efectos de los fármacos , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Osteoblastos , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo
9.
Talanta ; 239: 123093, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920258

RESUMEN

The increased production and use of nanopesticides will increase the likelihood of their exposure to humans and the environment. In order to properly evaluate their risk, it will be necessary to rigorously quantify their concentrations in major environmental compartments including water, soil and food. Due to major differences in the characteristics of their formulation, it is unclear whether analytical techniques that have been developed for conventional pesticides will allow quantification of the nano-forms. Therefore, it is necessary to develop and validate analytical techniques for the quantification of nanopesticides in foods and the environment. The goal of this study was to validate a method for analyzing the active ingredients of two pesticides with different physicochemical properties: azoxystrobin (AZOX, a fungicide, log Kow 3.7) and bifenthrin (BFT, an insecticide, log Kow 6.6) that were applied to agricultural soils, either as a conventional formulation or encapsulated in nanoparticles (either Allosperse® or porous hollow nSiO2). Pesticide-free strawberry plants (Fragaria × ananassa) and three different agricultural soils were spiked with the active ingredients (azoxystrobin and bifenthrin), in either conventional or nano formulations. A modified QuEChERS approach was used to extract the pesticides from the strawberry plants (roots, leaves and fruits) and a solvent extraction (1:2 acetonitrile) was employed for the soils. Samples were analyzed by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry in order to determine method detection limits, recoveries, precision and matrix effects for both the "conventional" and nanoencapsulated pesticides. Results for the modified method indicated good recoveries and precision for the analysis of the nanoencapsulated pesticides from strawberries and agricultural soils, with recoveries ranging from 85 to 127% (AZOX) and 68-138% (BFT). The results indicated that the presence of the nanoencapsulants had significant effects on the efficiency of extraction and the quantification of the active ingredients. The modified analytical methods were successfully used to measure strawberry and soil samples from a field experiment, providing the means to explore the fate of nanoencapsulated pesticides in food and environmental matrices.


Asunto(s)
Fragaria , Residuos de Plaguicidas , Plaguicidas , Cromatografía Liquida , Humanos , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Suelo , Espectrometría de Masas en Tándem
10.
Talanta ; 238(Pt 2): 123060, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34801914

RESUMEN

With the significant increase in the production and use of nanoparticles (NP), concern is increasing over their release into their environment. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) is emerging as one of the best techniques for detecting the very small NP at very low concentrations in natural waters. However, there is no unified protocol for the preparation of natural water samples for SP-ICP-MS analysis. In order to minimize nebulizer blockage, filtration is often used with the expectation that 0.45 µm membranes will not remove significant quantities of 1-100 nm NP. Nonetheless, there are limited data on its effect on the concentrations or size distributions of the NP. To that end, we examined the interactions between six different membrane filters and silver (Ag) and cerium oxide (CeO2) NP in aqueous samples. For Ag NP, the highest recoveries were observed for polypropylene membranes, where 55% of the pre-filtration NP were found in rainwater and 75% were found in river waters. For CeO2 NP, recoveries for the polypropylene membrane attained 60% in rainwater and 75% in river water. Recoveries could be increased to over 80% by pre-conditioning the filtration membranes with a multi-element solution. Similar recoveries were obtained when samples were centrifuged at low centrifugal forces (≤1000×g).


Asunto(s)
Nanopartículas del Metal , Filtración , Espectrometría de Masas , Tamaño de la Partícula , Plata , Análisis Espectral
11.
Environ Pollut ; 287: 117594, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34175518

RESUMEN

In order to better understand the environmental risks of the rare earth elements (REEs), it is necessary to determine their fate and biological effects under environmentally relevant conditions (e.g. at low concentrations, REE mixtures). Here, the unicellular freshwater microalga, Chlamydomonas reinhardtii, was exposed for 2 h to one of three soluble REEs (Ce, Tm, Y) salts at 0.5 µM or to an equimolar mixture of these REEs. RNA sequencing revealed common biological effects among the REEs. Known functions of the differentially expressed genes support effects of REEs on protein processing in the endoplasmic reticulum, phosphate transport and the homeostasis of Fe and Ca. The only stress response detected was related to protein misfolding in the endoplasmic reticulum. When the REEs were applied as a mixture, antagonistic effects were overwhelmingly observed with transcriptomic results suggesting that the REEs were initially competing with each other for bio-uptake. Metal biouptake results were consistent with this interpretation. These results suggest that the approach of government agencies to regulate the REEs using biological effects data from single metal exposures may be a largely conservative approach.


Asunto(s)
Chlamydomonas reinhardtii , Metales de Tierras Raras , Transporte Biológico , Chlamydomonas reinhardtii/genética , Agua Dulce , Metales
12.
Environ Sci Technol ; 55(14): 9836-9844, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34181400

RESUMEN

Nanoparticle (NP) emissions to the environment are increasing as a result of anthropogenic activities, prompting concerns for ecosystems and human health. In order to evaluate the risk of NPs, it is necessary to know their concentrations in various environmental compartments on regional and global scales; however, these data have remained largely elusive due to the analytical difficulties of measuring NPs in complex natural matrices. Here, we measure NP concentrations and sizes for Ti-, Ce-, and Ag-containing NPs in numerous global surface waters and precipitation samples, and we provide insights into their compositions and origins (natural or anthropogenic). The results link NP occurrences and distributions to particle type, origin, and sampling location. Based on measurements from 46 sites across 13 countries, total Ti- and Ce-NP concentrations (regardless of origin) were often found to be within 104 to 107 NP mL-1, whereas Ag NPs exhibited sporadic occurrences with low concentrations generally up to 105 NP mL-1. This generally corresponded to mass concentrations of <1 ng L-1 for Ag-NPs, <100 ng L-1 for Ce-NPs, and <10 µg L-1 for Ti-NPs, given that measured sizes were often below 15 nm for Ce- and Ag-NPs and above 30 nm for Ti-NPs. In view of current toxicological data, the observed NP levels do not yet appear to exceed toxicity thresholds for the environment or human health; however, NPs of likely anthropogenic origins appear to be already substantial in certain areas, such as urban centers. This work lays the foundation for broader experimental NP surveys, which will be critical for reliable NP risk assessments and the regulation of nano-enabled products.


Asunto(s)
Nanopartículas del Metal , Plata , Ecosistema , Humanos , Titanio
13.
Metallomics ; 13(1)2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33570134

RESUMEN

Cerium (Ce) is a rare earth element that is incorporated in numerous consumer products, either in its cationic form or as engineered nanoparticles (ENPs). Given the propensity of small oxide particles to dissolve, it is unclear whether biological responses induced by ENPs will be due to the nanoparticles themselves or rather due to their dissolution. This study provides the foundation for the development of transcriptomic biomarkers that are specific for ionic Ce in the freshwater alga, Chlamydomonas reinhardtii, exposed either to ionic Ce or to two different types of small Ce ENPs (uncoated, ∼10 nm, or citrate-coated, ∼4 nm). Quantitative reverse transcription PCR was used to analyse mRNA levels of four ionic Ce-specific genes (Cre17g.737300, MMP6, GTR12, and HSP22E) that were previously identified by whole transcriptome analysis in addition to two oxidative stress biomarkers (APX1 and GPX5). Expression was characterized for exposures to 0.03-3 µM Ce, for 60-360 min and for pH 5.0-8.0. Near-linear concentration-response curves were obtained for the ionic Ce and as a function of exposure time. Some variability in the transcriptomic response was observed as a function of pH, which was attributed to the formation of metastable Ce species in solution. Oxidative stress biomarkers analysed at transcriptomic and cellular levels confirmed that different effects were induced for dissolved Ce in comparison to Ce ENPs. The measured expression levels confirmed that changes in Ce speciation and the dissolution of Ce ENPs greatly influence Ce bioavailability.


Asunto(s)
Cerio/química , Chlamydomonas reinhardtii/metabolismo , Nanopartículas del Metal/química , Transcriptoma , Disponibilidad Biológica , Biomarcadores/metabolismo , Cerio/farmacocinética , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Iones , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Solubilidad
14.
ACS Appl Mater Interfaces ; 13(5): 6545-6556, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33522805

RESUMEN

We describe surface-enhanced Raman spectroscopy (SERS) aptasensors that can indirectly detect MC-LR and MC-RR, individually or simultaneously, in natural water and in algal culture. The sensor is constructed from nanoparticles composed of successive layers of Au core-SERS label-silver shell-gold shell (Au@label@Ag@Au NPs), functionalized on the outer Au surface by MC-LR and/or MC-RR aptamers. These NPs are immobilized on asymmetric Au nanoflowers (AuNFs) dispersed on planar silicon substrates through DNA hybridization of the aptamers and capture DNA sequences with which the AuNFs are functionalized, thereby forming core-satellite nanostructures on the substrates. This construction led to greater electromagnetic (EM) field enhancement of the Raman label-modified region, as supported by finite-difference time-domain (FDTD) simulations of the core-satellite assembly. In the presence of MC-LR and/or MC-RR, the aptamer-functionalized NPs dissociate from the AuNFs because of the stronger affinity of the aptamers with the MCs, which decreases the SERS signal, thus allowing indirect detection of the MCs. The improved SERS sensitivity significantly decreased the limit of detection (LOD) for separate MC-LR detection (0.8 pM) and for multiplex detection (1.5 pM for MC-LR and 1.3 pM for MC-RR), compared with other recently reported SERS-based methods for MC-LR detection. The aptasensors show excellent selectivity to MC-LR/MC-RR and excellent recoveries (96-105%). The use of these SERS aptasensors to monitor MC-LR production over 1 week in a culture medium of M. aeruginosa cells demonstrates the applicability of the sensors in a realistic environment.


Asunto(s)
Aptámeros de Nucleótidos/química , Microcistinas/análisis , Oro/química , Nanopartículas del Metal/química , Tamaño de la Partícula , Plata/química , Espectrometría Raman , Propiedades de Superficie
15.
Molecules ; 25(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255591

RESUMEN

As the production and use of cerium oxide nanoparticles (CeO2 NPs) increases, so does the concern of the scientific community over their release into the environment. Single particle inductively coupled plasma mass spectrometry is emerging as one of the best techniques for NP detection and quantification; however, it is often limited by high size detection limits (SDL). To that end, a high sensitivity sector field ICP-MS (SF-ICP-MS) with microsecond dwell times (50 µs) was used to lower the SDL of CeO2 NPs to below 4.0 nm. Ag and Au NPs were also analyzed for reference. SF-ICP-MS was then used to detect CeO2 NPs in a Montreal rainwater at a concentration of (2.2 ± 0.1) × 108 L-1 with a mean diameter of 10.8 ± 0.2 nm; and in a St. Lawrence River water at a concentration of ((1.6 ± 0.3) × 109 L-1) with a higher mean diameter (21.9 ± 0.8 nm). SF-ICP-MS and single particle time of flight ICP-MS on Ce and La indicated that 36% of the Ce-containing NPs detected in Montreal rainwater were engineered Ce NPs.


Asunto(s)
Técnicas Biosensibles , Cerio/química , Espectrometría de Masas , Nanopartículas/análisis , Nanopartículas/química , Agua/análisis , Agua/química , Filtración , Espectrometría de Masas/métodos , Tamaño de la Partícula , Sensibilidad y Especificidad
18.
Environ Monit Assess ; 192(8): 484, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32617676

RESUMEN

As the application of nanoparticles (NPs) and their release to the environment has increased, it is important to verify their toxicity, with a special emphasis on particle solubilization and the interaction of NP mixtures. In the current study, a model luminescent bacteria, Vibrio fischeri, was employed to test the acute toxicity of individual NPs and their binary mixtures, including metal NPs (ZnNPs, CuNPs) and metal oxide NPs (ZnONPs, CuONPs). The independent action model was used to reflect the synergistic, additive, or antagonistic interactions of binary mixtures of these NPs. The results showed that the median effective concentration (EC50) inhibited the luminescence of V. fischeri were 20.5, 4.1, 11.6, and 118.7 mg L-1 for ZnNPs, CuNPs, ZnONPs, and CuONPs, respectively, suggesting that the toxicity of these NPs to V. fischeri were as the following order: CuNPs > ZnONPs > ZnNPs > CuONPs. The combined effect of NPs were found to be antagonistic for CuNPs-ZnONPs and CuNPs-CuONPs, synergistic for CuONPs-ZnNPs, CuNPs-ZnNPs, and ZnONPs-CuONPs, and additive for ZnNPs-ZnONPs, revealing a complex pattern of possible interactions. The differences of dissolved metal ions partly accounted for the different combined toxicity of binary mixtures of NPs. The findings have important implications for better understanding the true environmental risk of NP mixtures.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Aliivibrio fischeri , Monitoreo del Ambiente , Iones , Luminiscencia
19.
Environ Geochem Health ; 42(11): 3965-3981, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32653967

RESUMEN

To investigate the risks posed by trace and rare earth elements (REEs) in two tropical uranium ore fields, metal concentrations from 50 vegetable samples (corn and soybean) and their corresponding agricultural soils were evaluated in a U mining area and a U-rich coal mining area in Brazil. Samples from both areas had metal concentrations (REE: La to Lu, and trace elements: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U, Sr) that were higher than the guidelines proposed by the Brazilian environmental agency. Soils from the U mining area (Poços de Caldas) generally had higher contents of trace elements than the coal mining area (Figueira), with the exception of Ni and Cr, indicating a higher risk of pollution, which was confirmed by a pollution load index that was greater than unity. For both sites, concentrations of uranium in the soil and plants, its hazard quotients and the soil contamination factor were higher in agricultural fields closer to the mines, indicating that contamination and the consequent risks to human health were distance dependent. REE concentrations averaged 52.8 mg kg-1 in the topsoils and 0.76 mg kg-1 in the grains for Figueira, whereas higher values of 371 mg kg-1 (topsoils) and 0.9 mg kg-1 (grains) were found in Poços de Caldas. Based upon corn and soybean consumption, the estimated intake dose of the REE was lower than the intake dose predicted to be problematic for human health for both sites, indicating limited risk related to the ingestion of REE.


Asunto(s)
Productos Agrícolas/química , Metales de Tierras Raras/análisis , Contaminantes del Suelo/análisis , Uranio/análisis , Agricultura , Brasil , Minas de Carbón , Exposición Dietética/efectos adversos , Exposición Dietética/análisis , Monitoreo del Ambiente , Humanos , Minería , Nivel sin Efectos Adversos Observados , Medición de Riesgo , Suelo/química , Oligoelementos/análisis , Zea mays/química
20.
Chemosphere ; 261: 127679, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32717510

RESUMEN

It is important to understand the environmental fate and potential risks posed by metals and metalloids around mines and in legacy mining areas. In order to assess the bioavailable concentrations of several potentially toxic elements (PTEs: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U) and rare earth elements (REEs: La to Lu), a multi-method evaluation of their concentrations/fractionation/speciation in soils was related to their biouptake in corn, for a region surrounding a legacy U mine in Brazil. Chemical fractions of the PTE and REE in soils were determined using the BCR (Community Bureau of Reference) sequential extraction procedure; a single extraction with Ca(NO3)2 and the diffusion gradient in thin films (DGT) technique. All techniques were better correlated to the metals accumulated by the crops as compared to total metal concentrations. Ba, Cu, Mn and Zn were shown to have high mobility and high bioaccumulation factors in the corn. Concentrations of U, As, Cd, and Pb were above threshold concentrations and strongly correlated, suggesting that they had a similar anthropogenic source. Geospatial modeling agreed with results from principal component analysis, indicating multiple sources for the contamination. Results highlighted the need for multi-method approaches when evaluating the long-term risks posed by PTEs and REEs in agricultural soils.


Asunto(s)
Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Uranio/análisis , Agricultura , Bioacumulación , Brasil , Fraccionamiento Químico , Productos Agrícolas , Metaloides/análisis , Metales Pesados/análisis , Minería , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...