Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; : e14120, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403918

RESUMEN

Long considered to fluctuate between pro- and anti-inflammatory states, it has now become evident that microglia occupy a variegated phenotypic landscape with relevance to aging and neurodegeneration. However, whether specific microglial subsets converge in or contribute to both processes that eventually affect brain function is less clear. To investigate this, we analyzed microglial heterogeneity in a tauopathy mouse model (K18-seeded P301L) and an accelerated aging model (Senescence-Accelerated Mouse-Prone 8, SAMP8) using cellular indexing of transcriptomes and epitopes by sequencing. We found that widespread tau pathology in K18-seeded P301L mice caused a significant change in the number and morphology of microglia, but only a mild overrepresentation of disease-associated microglia. At the cell population-level, we observed a marked upregulation of the calprotectin-encoding genes S100a8 and S100a9. In 9-month-old SAMP8 mice, we identified a unique microglial subpopulation that showed partial similarity with the disease-associated microglia phenotype and was additionally characterized by a high expression of the same calprotectin gene set. Immunostaining for S100A8 revealed that this population was enriched in the hippocampus, correlating with the cognitive impairment observed in this model. However, incomplete colocalization between their residence and markers of neuronal loss suggests regional specificity. Importantly, S100A8-positive microglia were also retrieved in brain biopsies of human AD and tauopathy patients as well as in a biopsy of an aged individual without reported pathology. Thus, the emergence of S100A8-positive microglia portrays a conspicuous commonality between accelerated aging and tauopathy progression, which may have relevance for ensuing brain dysfunction.

2.
J Proteome Res ; 22(4): 1309-1321, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36888912

RESUMEN

O-ß-linked N-acetylglucosaminylation (O-GlcNAcylation) modulates tau phosphorylation and aggregation: the pharmacological increase of tau O-GlcNAcylation upon treatment with inhibitors of O-GlcNAc hydrolase (OGA) constitutes a potential strategy to tackle neurodegenerative diseases. Analysis of tau O-GlcNAcylation could potentially be used as a pharmacodynamic biomarker both in preclinical and clinical studies. The goal of the current study was to confirm tau O-GlcNAcylation at S400 as a pharmacodynamic readout of OGA inhibition in P301S transgenic mice overexpressing human tau and treated with the OGA inhibitor Thiamet G and to explore if additional O-GlcNAcylation sites on tau could be identified. As a first step, an immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) methodology was developed to monitor changes in O-GlcNAcylation around S400 of tau in mouse brain homogenate (BH) extracts. Second, additional O-GlcNAc sites were identified in in-house produced recombinant O-GlcNAcylated human tau at relatively high concentrations, thereby facilitating collection of informative LC-MS data for identification of low-concentration O-GlcNAc-tryptic tau peptides in human transgenic mouse BH extracts. This strategy enabled, for the first time, identification of three low abundant N-terminal and mid-domain O-GlcNAc sites of tau (at S208, S191, and S184 or S185) in human transgenic mouse BH. Data are openly available at data.mendeley.com (doi: 10.17632/jp57yk9469.1; doi: 10.17632/8n5j45dnd8.1; doi: 10.17632/h5vdrx4n3d.1).


Asunto(s)
beta-N-Acetilhexosaminidasas , Proteínas tau , Animales , Humanos , Ratones , Acetilglucosamina/farmacología , beta-N-Acetilhexosaminidasas/genética , Ratones Transgénicos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Fosforilación , Proteínas tau/química , Espectrometría de Masas en Tándem
3.
Neurobiol Dis ; 154: 105365, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33848635

RESUMEN

The imbalance between production and clearance of amyloid ß (Aß) peptides and their resulting accumulation in the brain is an early and crucial step in the pathogenesis of Alzheimer's disease (AD). Therefore, Aß is strongly positioned as a promising and extensively validated therapeutic target for AD. Investigational disease-modifying approaches aiming at reducing cerebral Aß concentrations include prevention of de novo production of Aß through inhibition of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), and clearance of Aß deposits via passive Aß immunotherapy. We have developed a novel, high affinity antibody against Aß peptides bearing a pyroglutamate residue at amino acid position 3 (3pE), an Aß species abundantly present in plaque deposits in AD brains. Here, we describe the preclinical characterization of this antibody, and demonstrate a significant reduction in amyloid burden in the absence of microhemorrhages in different mouse models with established plaque deposition. Moreover, we combined antibody treatment with chronic BACE1 inhibitor treatment and demonstrate significant clearance of pre-existing amyloid deposits in transgenic mouse brain, without induction of microhemorrhages and other histopathological findings. Together, these data confirm significant potential for the 3pE-specific antibody to be developed as a passive immunotherapy approach that balances efficacy and safety. Moreover, our studies suggest further enhanced treatment efficacy and favorable safety after combination of the 3pE-specific antibody with BACE1 inhibitor treatment.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/antagonistas & inhibidores , Anticuerpos Monoclonales/administración & dosificación , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Inmunización Pasiva/métodos , Fragmentos de Péptidos/antagonistas & inhibidores , Placa Amiloide/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/inmunología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Ácido Aspártico Endopeptidasas/inmunología , Ácido Aspártico Endopeptidasas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Placa Amiloide/inmunología , Placa Amiloide/metabolismo , Resultado del Tratamiento
4.
J Alzheimers Dis ; 77(4): 1397-1416, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32894244

RESUMEN

BACKGROUND: As a consequence of the discovery of an extracellular component responsible for the progression of tau pathology, tau immunotherapy is being extensively explored in both preclinical and clinical studies as a disease modifying strategy for the treatment of Alzheimer's disease. OBJECTIVE: Describe the characteristics of the anti-phospho (T212/T217) tau selective antibody PT3 and its humanized variant hPT3. METHODS: By performing different immunization campaigns, a large collection of antibodies has been generated and prioritized. In depth, in vitro characterization using surface plasmon resonance, phospho-epitope mapping, and X-ray crystallography experiments were performed. Further characterization involved immunohistochemical staining on mouse- and human postmortem tissue and neutralization of tau seeding by immunodepletion assays. RESULTS AND CONCLUSION: Various in vitro experiments demonstrated a high intrinsic affinity for PT3 and hPT3 for AD brain-derived paired helical filaments but also to non-aggregated phospho (T212/T217) tau. Further functional analyses in cellular and in vivo models of tau seeding demonstrated almost complete depletion of tau seeds in an AD brain homogenate. Ongoing trials will provide the clinical evaluation of the tau spreading hypothesis in Alzheimer's disease.


Asunto(s)
Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Monoclonales/metabolismo , Descubrimiento de Drogas/métodos , Proteínas tau/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales Humanizados/química , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Estructura Terciaria de Proteína , Proteínas tau/química
5.
Neurobiol Dis ; 127: 398-409, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30878534

RESUMEN

We have exploited whole brain microscopy to map the progressive deposition of hyperphosphorylated tau in intact, cleared mouse brain. We found that the three-dimensional spreading pattern of hyperphosphorylated tau in the brain of an aging Tau.P301L mouse model did not resemble that observed in AD patients. Injection of synthetic or patient-derived tau fibrils in the CA1 region resulted in a more faithful spreading pattern. Atlas-guided volumetric analysis showed a connectome-dependent spreading from the injection site and also revealed hyperphosphorylated tau deposits beyond the direct anatomical connections. In fibril-injected brains, we also detected a persistent subpopulation of rod-like and swollen microglia. Furthermore, we showed that the hyperphosphorylated tau load could be reduced by intracranial co-administration of, and to a lesser extent, by repeated systemic dosing with an antibody targeting the microtubule-binding domain of tau. Thus, the combination of targeted seeding and in toto staging of tau pathology allowed assessing regional vulnerability in a comprehensive manner, and holds potential as a preclinical drug validation tool.


Asunto(s)
Encéfalo/metabolismo , Microglía/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Ratones Transgénicos , Microglía/patología , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Tauopatías/patología
6.
Neuropharmacology ; 146: 109-116, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30472272

RESUMEN

Neuroimaging endophenotypes in animal models provide an objective and translationally-relevant alternative to cognitive/behavioral traits in human psychopathologies. Metabolic alterations, such as those involved in the glutamate-cycle, have been proposed to play a preponderant role in both depression and schizophrenia. Chronic Mild Unpredictable Stress (CMUS) and sub-chronic administration of NMDA receptor antagonist generate animal models of depression and schizophrenia, respectively. The models are based on etiologically-relevant factors related to the induction and support of these psychopathologies. To test metabolic alterations within the glutamate-cycle and in other major neurochemicals, single-voxel Magnetic Resonance Spectroscopy was recorded within the hippocampus in both rat models and control animals. Surprisingly, altered glutamate-related metabolites were observed in the CMUS model, but not NMDA-based model, as indicated by decreased glutamine and increased GABA levels. However, both models presented elevated total visible choline and inositol levels relative to controls. These results indicate the presence cell membrane metabolic alterations and inflammatory processes shared in both models, comparable to evidence presented in schizophrenia and depression and other comparable animal models. These translationally-relevant biomarkers may thus form the basis for drug-development targets in both psychopathologies.


Asunto(s)
Depresión/metabolismo , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Esquizofrenia/metabolismo , Anhedonia , Animales , Colina/metabolismo , Depresión/diagnóstico por imagen , Antagonistas de Aminoácidos Excitadores/farmacología , Glutamina/metabolismo , Inositol/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Memantina/farmacología , Actividad Motora , Ratas , Ratas Wistar , Esquizofrenia/diagnóstico por imagen , Estrés Psicológico/metabolismo , Sacarosa , Taurina/metabolismo
7.
Acta Neuropathol Commun ; 6(1): 59, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30001207

RESUMEN

Aggregation of tau protein and spreading of tau aggregates are pivotal pathological processes in a range of neurological disorders. Accumulating evidence suggests that immunotherapy targeting tau may be a viable therapeutic strategy. We have previously described the isolation of antibody CBTAU-22.1 from the memory B-cell repertoire of healthy human donors. CBTAU-22.1 was shown to specifically bind a disease-associated phosphorylated epitope in the C-terminus of tau (Ser422) and to be able to inhibit the spreading of pathological tau aggregates from P301S spinal cord lysates in vitro, albeit with limited potency. Using a combination of rational design and random mutagenesis we have derived a variant antibody with improved affinity while maintaining the specificity of the parental antibody. This affinity improved antibody showed greatly enhanced potency in a cell-based immunodepletion assay using paired helical filaments (PHFs) derived from human Alzheimer's disease (AD) brain tissue. Moreover, the affinity improved antibody limits the in vitro aggregation propensity of full length tau species specifically phosphorylated at position 422 produced by employing a native chemical ligation approach. Together, these results indicate that in addition to being able to inhibit the spreading of pathological tau aggregates, the matured antibody can potentially also interfere with the nucleation of tau which is believed to be the first step of the pathogenic process. Finally, the functionality in a P301L transgenic mice co-injection model highlights the therapeutic potential of human antibody dmCBTAU-22.1.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Anticuerpos/farmacología , Encéfalo/metabolismo , Serina/metabolismo , Proteínas tau/inmunología , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Animales , Afinidad de Anticuerpos/efectos de los fármacos , Autopsia , Encéfalo/patología , Relación Dosis-Respuesta a Droga , Epítopos/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Microscopía de Fuerza Atómica , Persona de Mediana Edad , Modelos Moleculares , Mutagénesis , Mutación/genética , Fosforilación/fisiología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Agregación Patológica de Proteínas/terapia
8.
J Alzheimers Dis ; 65(1): 265-281, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30040731

RESUMEN

The tau spreading hypothesis provides rationale for passive immunization with an anti-tau monoclonal antibody to block seeding by extracellular tau aggregates as a disease-modifying strategy for the treatment of Alzheimer's disease (AD) and potentially other tauopathies. As the biochemical and biophysical properties of the tau species responsible for the spatio-temporal sequences of seeding events are poorly defined, it is not yet clear which epitope is preferred for obtaining optimal therapeutic efficacy. Our internal tau antibody collection has been generated by immunizations with different tau species: aggregated- and non-aggregated tau and human postmortem AD brain-derived tau fibrils. In this communication, we describe and characterize a set of these anti-tau antibodies for their biochemical and biophysical properties, including binding, tissue staining by immunohistochemistry, and epitope. The antibodies bound to different domains of the tau protein and some were demonstrated to be isoform-selective (PT18 and hTau56) or phospho-selective (PT84). Evaluation of the antibodies in cellular- and in vivo seeding assays revealed clear differences in maximal efficacy. Limited proteolysis experiments support the hypothesis that some epitopes are more exposed than others in the tau seeds. Moreover, antibody efficacy seems to depend on the structural properties of fibrils purified from tau Tg mice- and postmortem human AD brain.


Asunto(s)
Enfermedad de Alzheimer/patología , Anticuerpos Monoclonales/metabolismo , Encéfalo/metabolismo , Proteínas tau/inmunología , Animales , Mapeo Epitopo , Femenino , Células HEK293 , Humanos , Inmunización Pasiva , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Resonancia por Plasmón de Superficie , Proteínas tau/deficiencia , Proteínas tau/genética
9.
Behav Brain Res ; 258: 179-86, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24129217

RESUMEN

Over the past decade a neurodevelopmental animal model with high validity for schizophrenia has been developed based on the environmental risk factor known as maternal immune activation (MIA). The immunological basis of this model, together with extensive data from clinical and preclinical context, suggests the involvement of an aberrant neuro-immune system in the pathophysiology of schizophrenia. The goal of this study was to examine microglia activation in adult behaviourally phenotyped MIA offspring. MIA was induced in pregnant rats using viral mimetic Poly I:C at gestational day 15. Adult offspring were behaviourally phenotyped at postnatal days (PND) 56, 90 and 180 through the evaluation of prepulse inhibition (PPI) of the acoustic startle and spontaneous locomotion. Finally, the presence of activated microglia in brain regions associated with schizophrenia was evaluated using post-mortem immunohistochemistry against OX-42 (CD11b) and ED-1 (CD68). Although a deficit in PPI could not be replicated despite the high number of animals tested, we found an overall decrease in basal startle response and spontaneous locomotion in offspring born to Poly I:C- compared to saline-treated dams, accompanied by increased microglial density with characteristics of non-reactive activation in the chronic stage of the model. These findings provide additional evidence for a role played by microglial activation in schizophrenia-related pathology in general and psychomotor slowing in particular, and warrant extensive research on the underlying mechanism in order to establish new drug targets for the treatment of schizophrenia patients with an inflammatory component.


Asunto(s)
Microglía/inmunología , Actividad Motora/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Esquizofrenia/inmunología , Estimulación Acústica , Animales , Modelos Animales de Enfermedad , Femenino , Microglía/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Poli I-C/farmacología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Reflejo de Sobresalto/inmunología , Esquizofrenia/fisiopatología
10.
Behav Brain Res ; 172(1): 122-34, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16764948

RESUMEN

Assessment of cognition and information processing in mice is an important tool in preclinical research that focuses on the development of cognitive enhancing drugs. Analysis of transgenic (TG) and knockout (KO) mice is usually performed on a F2 B6x 129 background. In the present study, we have compared performance of F2 B6x 129 hybrid mice (F2 mice) with that of the two parental inbred strains (C57Bl/6J and 129sv mice), and a wild-type (WT) strain (with a combined B6x 129 background) in three cognitive/information processing paradigms. It was found that the F2 mice outperformed either of the parental strains and provide a control sample with good baseline performance in the Morris water maze (MWM). Reliable deficits could be obtained in learning and memory in this paradigm following injections with scopolamine (0.16 mg/kg) in the F2 mice, which can potentially be used to test effects of reference and novel compounds in order to develop cognitive enhancing drugs. Furthermore, it was shown that the four genotypes showed normal latent inhibition (LI) using the conditioned taste aversion (CTA) paradigm and exhibited no differences in prepulse inhibition (PPI) levels. Following the setup of these procedures in mice, we are now able to compare the effects of gene knockout/mutations used for target validation with results in the present study as a frame of reference.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Reflejo de Sobresalto/fisiología , Animales , Antimaníacos/farmacología , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Condicionamiento Psicológico/fisiología , Genotipo , Cloruro de Litio/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Actividad Motora/fisiología , Antagonistas Muscarínicos/farmacología , Recompensa , Escopolamina/farmacología , Percepción Espacial/fisiología , Especificidad de la Especie , Sacarosa , Gusto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...