Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
bioRxiv ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38617208

RESUMEN

Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization. Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38642879

RESUMEN

OBJECTIVE: Exercise remains a hallmark treatment for post-traumatic osteoarthritis (PTOA) and may maintain joint homeostasis in part by clearing inflammatory cytokines, cells, and particles. It remains largely unknown whether exercise-induced joint clearance can provide therapeutic relief of PTOA. In this study, we hypothesized that exercise could slow the progression of preclinical PTOA in part by enhancing knee joint clearance. DESIGN: Surgical medial meniscal transection was used to induce PTOA in 3-month-old male Lewis rats. A sham surgery was used as a control. Mild treadmill walking was introduced 3 weeks post-surgery and maintained to 6 weeks post-surgery. Gait and isometric muscle torque were measured at the study endpoint. Near-infrared imaging tracked how exercise altered lymphatic and venous knee joint clearance during discrete time points of PTOA progression. RESULTS: Exercise mitigated joint degradation associated with PTOA by preserving glycosaminoglycan content and reducing osteophyte volume (effect size (95% Confidence Interval (CI)); 1.74 (0.71-2.26)). PTOA increased hind step widths (0.57 (0.18-0.95) cm), but exercise corrected this gait dysfunction (0.54 (0.16-0.93) cm), potentially indicating pain relief. Venous, but not lymphatic, clearance was quicker 1-, 3-, and 6-weeks post-surgery compared to baseline. The mild treadmill walking protocol expedited lymphatic clearance rate in moderate PTOA (3.39 (0.20-6.59) hrs), suggesting exercise may play a critical role in restoring joint homeostasis. CONCLUSIONS: We conclude that mild exercise has the potential to slow disease progression in part by expediting joint clearance in moderate PTOA.

3.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559240

RESUMEN

Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures. Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with rhBMPs can have off-target effects and significantly increase surgical costs, adding to patients' already high economic and mental burden. Recent studies have identified that FDA-approved immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506 potentiated the effect of low dose BMP-2 to enhance osteogenic differentiation and mineralization of hMSCs in vitro. Standalone treatment with FK506 delivered on a collagen sponge, produced consistent bone bridging of a rat critically-sized femoral defect with functional mechanical properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model, treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce bone formation in human cells and two challenging in vivo models, and indicate FK506 can be utilized either as a standalone treatment or in conjunction with rhBMP to treat a variety of spine disorders.

4.
Res Sq ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37886569

RESUMEN

Mechanical loading is integral to bone development and repair. The application of mechanical loads through rehabilitation are regularly prescribed as a clinical aide following severe bone injuries. However, current rehabilitation regimens typically involve long periods of non-loading and rely on subjective patient feedback, leading to muscle atrophy and soft tissue fibrosis. While many pre-clinical studies have focused on unloading, ambulatory loading, or direct mechanical compression, rehabilitation intensity and its impact on the local strain environment and subsequent bone healing have largely not been investigated. This study combines implantable strain sensors and subject-specific finite element models in a pre-clinical rodent model with a defect size on the cusp of critically-sized. Animals were enrolled in either high or low intensity rehabilitation one week post injury to investigate how rehabilitation intensity affects the local mechanical environment and subsequent functional bone regeneration. The high intensity rehabilitation animals were given free access to running wheels with resistance, which increased local strains within the regenerative niche by an average of 44% compared to the low intensity (no-resistance) group. Finite element modeling demonstrated that resistance rehabilitation significantly increased compressive strain by a factor of 2.0 at week 1 and 4.45 after 4 weeks of rehabilitation. The resistance rehabilitation group had significantly increased regenerated bone volume and higher bone bridging rates than its sedentary counterpart (bone volume: 22.00 mm3 ± 4.26 resistance rehabilitation vs 8.00 mm3 ± 2.27 sedentary; bridging rates: 90% resistance rehabilitation vs 50% sedentary). In addition, animals that underwent resistance running had femurs with improved mechanical properties compared to those left in sedentary conditions, with failure torque and torsional stiffness values matching their contralateral, intact femurs (stiffness: 0.036 Nm/deg ± 0.006 resistance rehabilitation vs 0.008 Nm/deg ± 0.006 sedentary). Running on a wheel with no resistance rehabilitation also increased bridging rates (100% no resistance rehabilitation vs 50% sedentary). Analysis of bone volume and von Frey suggest no-resistance rehabilitation may improve bone regeneration and hindlimb functionality. These results demonstrate the potential for early resistance rehabilitation as a rehabilitation regimen to improve bone regeneration and functional recovery.

5.
Front Bioeng Biotechnol ; 11: 1224141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744252

RESUMEN

Background: Micronized dehydrated human amnion/chorion membrane (mdHACM) has reduced short term post-traumatic osteoarthritis (PTOA) progression in rats when delivered 24 h after medial meniscal transection (MMT) and is being investigated for clinical use as a disease modifying therapy. Much remains to be assessed, including its potential for longer-term therapeutic benefit and treatment effects after onset of joint degeneration. Objectives: Characterize longer-term effects of acute treatment with mdHACM and determine whether treatment administered to joints with established PTOA could slow or reverse degeneration. Hypotheses: Acute treatment effects will be sustained for 6 weeks, and delivery of mdHACM after onset of joint degeneration will attenuate structural osteoarthritic changes. Methods: Rats underwent MMT or sham surgery (left leg). mdHACM was delivered intra-articularly 24 h or 3 weeks post-surgery (n = 5-7 per group). Six weeks post-surgery, animals were euthanized and left tibiae scanned using equilibrium partitioning of an ionic contrast agent microcomputed tomography (EPIC-µCT) to structurally quantify joint degeneration. Histology was performed to examine tibial plateau cartilage. Results: Quantitative 3D µCT showed that cartilage structural metrics (thickness, X-ray attenuation, surface roughness, exposed bone area) for delayed mdHACM treatment limbs were significantly improved over saline treatment and not significantly different from shams. Subchondral bone mineral density and thickness for the delayed treatment group were significantly improved over acute treated, and subchondral bone thickness was not significantly different from sham. Marginal osteophyte degenerative changes were decreased with delayed mdHACM treatment compared to saline. Acute treatment (24 h post-surgery) did not reduce longer-term joint tissue degeneration compared to saline. Histology supported µCT findings and further revealed that while delayed treatment reduced cartilage damage, chondrocytes displayed qualitatively different morphologies and density compared to sham. Conclusion: This study provides insight into effects of intra-articular delivery timing relative to PTOA progression and the duration of therapeutic benefit of mdHACM. Results suggest that mdHACM injection into already osteoarthritic joints can improve joint health, but a single, acute mdHACM injection post-injury does not prevent long term osteoarthritis associated with meniscal instability. Further work is needed to fully characterize the durability of therapeutic benefit in stable osteoarthritic joints and the effects of repeated injections.

6.
Commun Biol ; 6(1): 749, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468760

RESUMEN

Volumetric muscle loss (VML) results in permanent functional deficits and remains a substantial regenerative medicine challenge. A coordinated immune response is crucial for timely myofiber regeneration, however the immune response following VML has yet to be fully characterized. Here, we leveraged dimensionality reduction and pseudo-time analysis techniques to elucidate the cellular players underlying a functional or pathological outcome as a result of subcritical injury or critical VML in the murine quadriceps, respectively. We found that critical VML resulted in a sustained presence of M2-like and CD206hiLy6Chi 'hybrid' macrophages whereas subcritical defects resolved these populations. Notably, the retained M2-like macrophages from critical VML injuries presented with aberrant cytokine production which may contribute to fibrogenesis, as indicated by their co-localization with fibroadipogenic progenitors (FAPs) in areas of collagen deposition within the defect. Furthermore, several T cell subpopulations were significantly elevated in critical VML compared to subcritical injuries. These results demonstrate a dysregulated immune response in critical VML that is unable to fully resolve the chronic inflammatory state and transition to a pro-regenerative microenvironment within the first week after injury. These data provide important insights into potential therapeutic strategies which could reduce the immune cell burden and pro-fibrotic signaling characteristic of VML.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Ratones , Animales , Músculo Esquelético/patología , Regeneración , Enfermedades Musculares/patología , Enfermedades Musculares/terapia , Medicina Regenerativa , Colágeno
7.
BMJ Open ; 13(3): e069070, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944463

RESUMEN

INTRODUCTION: Orthopaedic trauma and fracture care commonly cause perioperative anaemia and associated functional iron deficiency due to a systemic inflammatory state. Modern, strict transfusion thresholds leave many patients anaemic; managing this perioperative anaemia is an opportunity to impact outcomes in orthopaedic trauma surgery. The primary outcome of this pilot study is feasibility for a large randomised controlled trial (RCT) to evaluate intravenous iron therapy (IVIT) to improve patient well-being following orthopaedic injury. Measurements will include rate of participant enrolment, screening failure, follow-up, missing data, adverse events and protocol deviation. METHODS AND ANALYSIS: This single-centre, pilot, double-blind RCT investigates the use of IVIT for acute blood loss anaemia in traumatically injured orthopaedic patients. Patients are randomised to receive either a single dose infusion of low-molecular weight iron dextran (1000 mg) or placebo (normal saline) postoperatively during their hospital stay for trauma management. Eligible subjects include adult patients admitted for lower extremity or pelvis operative fracture care with a haemoglobin of 7-11 g/dL within 7 days postoperatively during inpatient care. Exclusion criteria include history of intolerance to intravenous iron supplementation, active haemorrhage requiring ongoing blood product resuscitation, multiple planned procedures, pre-existing haematologic disorders or chronic inflammatory states, iron overload on screening or vulnerable populations. We follow patients for 3 months to measure the effect of iron supplementation on clinical outcomes (resolution of anaemia and functional iron deficiency), patient-reported outcomes (fatigue, physical function, depression and quality of life) and translational measures of immune cell function. ETHICS AND DISSEMINATION: This study has ethics approval (Oregon Health & Science University Institutional Review Board, STUDY00022441). We will disseminate the findings through peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER: NCT05292001; ClinicalTrials.gov.


Asunto(s)
Anemia , Deficiencias de Hierro , Ortopedia , Adulto , Humanos , Proyectos Piloto , Anemia/tratamiento farmacológico , Anemia/etiología , Hierro/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
8.
Microcirculation ; 30(2-3): e12792, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36369987

RESUMEN

BACKGROUND: Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Despite the various physical therapy and surgical options available, most treatments are palliative and fail to address the underlying lymphatic vascular insufficiency driving lymphedema progression. Stem cell therapy provides a promising alternative in the treatment of various chronic diseases with a wide range of therapeutic effects that reduce inflammation, fibrosis, and oxidative stress, while promoting lymphatic vessel (LV) regeneration. Specifically, stem cell transplantation is suggested to promote LV restoration, rebuild lymphatic circulation, and thus potentially be utilized towards an effective lymphedema treatment. In addition to stem cells, studies have proposed the administration of vascular endothelial growth factor C (VEGFC) to promote lymphangiogenesis and decrease swelling in lymphedema. AIMS: Here, we seek to combine the benefits of stem cell therapy, which provides a cellular therapeutic approach that can respond to the tissue environment, and VEGFC administration to restore lymphatic drainage. MATERIALS & METHODS: Specifically, we engineered mesenchymal stem cells (MSCs) to overexpress VEGFC using a lentiviral vector (hVEGFC MSC) and investigated their therapeutic efficacy in improving LV function and tissue swelling using near infrared (NIR) imaging, and lymphatic regeneration in a single LV ligation mouse tail lymphedema model. RESULTS: First, we showed that overexpression of VEGFC using lentiviral transduction led to an increase in VEGFC protein synthesis in vitro. Then, we demonstrated hVEGFC MSC administration post-injury significantly increased the lymphatic contraction frequency 14-, 21-, and 28-days post-surgery compared to the control animals (MSC administration) in vivo, while also reducing tail swelling 28-days post-surgery compared to controls. CONCLUSION: Our results suggest a therapeutic potential of hVEGFC MSC in alleviating the lymphatic dysfunction observed during lymphedema progression after secondary injury and could provide a promising approach to enhancing autologous cell therapy for treating lymphedema.


Asunto(s)
Vasos Linfáticos , Linfedema , Células Madre Mesenquimatosas , Animales , Ratones , Linfangiogénesis , Vasos Linfáticos/fisiología , Linfedema/terapia , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos BALB C , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/uso terapéutico , Lentivirus/genética
9.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187740

RESUMEN

Orofacial clefts are the most common craniofacial congenital anomaly. Following cleft palate repair, up to 60% of surgeries have wound healing complications leading to oronasal fistula (ONF), a persistent connection between the roof of the mouth and the nasal cavity. The current gold standard methods for ONF repair use human allograft tissues; however, these procedures have risks of graft infection and/or rejection, requiring surgical revisions. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. We utilized a repurposed FDA-approved immunomodulatory drug, FTY720, to reduce the egress of lymphocytes and induce immune cell fate switching toward pro-regenerative phenotypes. Here, we engineered a bilayer biomaterial system using Tegaderm™, a liquid-impermeable wound dressing, to secure and control the delivery of FTY720- nanofiber scaffolds (FTY720-NF). We optimized release kinetics of the bilayer FTY720-NF to sustain drug release for up to 7d with safe, efficacious transdermal absorption and tissue biodistribution. Through comprehensive immunophenotyping, our results illustrate a pseudotime pro-regenerative state transition in recruited hybrid immune cells to the wound site. Additional histological assessments established a significant difference in full thickness ONF closure in mice on Day 7 following treatment with bilayer FTY720-NF, compared to controls. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options for pediatric patients. One Sentence Summary: Local delivery of bilayer FTY720-nanofiber scaffolds in an ONF mouse model promotes complete wound closure through modulation of pro-regenerative immune and stromal cells.

10.
Front Surg ; 9: 934773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874126

RESUMEN

Bone non-unions resulting from severe traumatic injuries pose significant clinical challenges, and the biological factors that drive progression towards and healing from these injuries are still not well understood. Recently, a dysregulated systemic immune response following musculoskeletal trauma has been identified as a contributing factor for poor outcomes and complications such as infections. In particular, myeloid-derived suppressor cells (MDSCs), immunosuppressive myeloid-lineage cells that expand in response to traumatic injury, have been highlighted as a potential therapeutic target to restore systemic immune homeostasis and ultimately improve functional bone regeneration. Previously, we have developed a novel immunomodulatory therapeutic strategy to deplete MDSCs using Janus gold nanoparticles that mimic the structure and function of antibodies. Here, in a preclinical delayed treatment composite injury model of bone and muscle trauma, we investigate the effects of these nanoparticles on circulating MDSCs, systemic immune profiles, and functional bone regeneration. Unexpectedly, treatment with the nanoparticles resulted in depletion of the high side scatter subset of MDSCs and an increase in the low side scatter subset of MDSCs, resulting in an overall increase in total MDSCs. This overall increase correlated with a decrease in bone volume (P = 0.057) at 6 weeks post-treatment and a significant decrease in mechanical strength at 12 weeks post-treatment compared to untreated rats. Furthermore, MDSCs correlated negatively with endpoint bone healing at multiple timepoints. Single cell RNA sequencing of circulating immune cells revealed differing gene expression of the SNAb target molecule S100A8/A9 in MDSC sub-populations, highlighting a potential need for more targeted approaches to MDSC immunomodulatory treatment following trauma. These results provide further insights on the role of systemic immune dysregulation for severe trauma outcomes in the case of non-unions and composite injuries and suggest the need for additional studies on targeted immunomodulatory interventions to enhance healing.

11.
Am J Sports Med ; 50(5): 1389-1398, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35420503

RESUMEN

BACKGROUND: Intra-articular injections of human mesenchymal stromal cells (hMSCs) have shown promise in slowing cartilage degradation in posttraumatic osteoarthritis (PTOA). Clinical use of cell therapies for osteoarthritis has accelerated in recent years without sufficient scientific evidence defining best-use practices. Common recommendations advise patients to avoid nonsteroidal anti-inflammatory drug (NSAID) use before and after cell injection over concerns that NSAIDs may affect therapeutic efficacy. Recommendations to restrict NSAID use are challenging for patients, and it is unclear if patients are compliant. HYPOTHESIS: NSAIDs will reduce the efficacy of hMSC therapy in treating a preclinical model of PTOA. STUDY DESIGN: Controlled laboratory study. METHODS: Lewis rats underwent medial meniscal transection (MMT) surgery to induce PTOA or a sham (sham group) surgery that did not progress to PTOA. Rats received naproxen solution orally daily before (Pre-NSAID group) or after (Post-NSAID group) hMSC treatment, throughout the course of the experiment (Full-NSAID group), or received hMSCs without NSAIDs (No NSAID). Cartilage morphology and composition were quantified using contrast-enhanced micro-computed tomography and histology. Pain (secondary allodynia) was measured using a von Frey filament. RESULTS: Injection of hMSCs attenuated cartilage degeneration associated with MMT. hMSCs prevented proteoglycan loss, maintained smooth cartilage surfaces, reduced cartilage lesions, reduced mineralized osteophyte formation, and reduced pain by week 7. The Pre-NSAID group had decreased proteoglycan levels compared with the hMSC group, although there were no other significant differences. Thus, pretreatment with NSAIDs had minimal effects on the therapeutic benefits of hMSC injections. The Post-NSAID and Full-NSAID groups, however, exhibited significantly worse osteoarthritis than the hMSC-only group, with greater proteoglycan loss, surface roughness, osteophyte volume, and pain. CONCLUSION: Use of NSAIDs before hMSC injection minimally reduced the therapeutic benefits for PTOA, which included preservation of cartilage surface integrity as well as a reduction in osteophytes. Use of NSAIDs after injections, however, substantially reduced the therapeutic efficacy of cellular treatment. CLINICAL RELEVANCE: Our data support the clinical recommendation of avoiding NSAID use after hMSC injection but suggest that using NSAIDs before treatment may not substantially diminish the therapeutic efficacy of cell treatment.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Osteoartritis , Osteofito , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Cartílago Articular/patología , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/patología , Osteofito/patología , Dolor/metabolismo , Proteoglicanos/metabolismo , Ratas , Ratas Endogámicas Lew , Roedores , Microtomografía por Rayos X
12.
J Biomech Eng ; 144(7)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35118490

RESUMEN

The lymphatic system has been proposed to play a crucial role in preventing the development and progression of osteoarthritis (OA). As OA develops and progresses, inflammatory cytokines and degradation by-products of joint tissues build up in the synovial fluid (SF) providing a feedback system to exacerbate disease. The lymphatic system plays a critical role in resolving inflammation and maintaining overall joint homeostasis; however, there is some evidence that the lymphatics can become dysfunctional during OA. We hypothesized that the functional mechanics of lymphatic vessels (LVs) draining the joint could be directly compromised due to factors within SF derived from osteoarthritis patients (OASF). Here, we utilized OASF and SF derived from healthy (non-OA) individuals (healthy SF (HSF)) to investigate potential effects of SF entering the draining lymph on migration of lymphatic endothelial cells (LECs) in vitro, and lymphatic contractile activity of rat femoral LVs (RFLVs) ex vivo. Dilutions of both OASF and HSF containing serum resulted in a similar LEC migratory response to the physiologically endothelial basal medium-treated LECs (endothelial basal medium containing serum) in vitro. Ex vivo, OASF and HSF treatments were administered within the lumen of isolated LVs under controlled pressures. OASF treatment transiently enhanced the RFLVs tonic contractions while phasic contractions were significantly reduced after 1 h of treatment and complete ceased after overnight treatment. HSF treatment on the other hand displayed a gradual decrease in lymphatic contractile activity (both tonic and phasic contractions). The observed variations after SF treatments suggest that the pump function of lymphatic vessel draining the joint could be directly compromised in OA and thus might present a new therapeutic target.


Asunto(s)
Vasos Linfáticos , Osteoartritis , Animales , Células Endoteliales , Humanos , Sistema Linfático/metabolismo , Vasos Linfáticos/metabolismo , Ratas , Líquido Sinovial/metabolismo
13.
Acta Biomater ; 141: 315-332, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34979327

RESUMEN

Mesenchymal stromal cells (MSCs) have shown promise as osteoarthritis (OA) treatments; however, effective translation has been limited by high variability and heterogeneity of MSCs, suboptimal delivery strategies, and poor understanding of critical quality and potency attributes. Furthermore, most pre-clinical studies of MSC therapeutics for OA have focused on delaying OA development and not on treating established OA, which brings added clinical relevance. Thus, the objective of the current study was to assess the effects of sodium alginate microencapsulation on human MSC (hMSC) secretion of immunomodulatory cytokines in an OA microenvironment and therapeutic efficacy in treating established OA. A Medial Meniscal Transection (MMT) pre-clinical model of OA was implemented. Three weeks post-surgery, after OA was established, intra-articular injections of encapsulated hMSCs or nonencapsulated hMSCs were administered. Six weeks post-surgery, microstructural changes in the knee joint were quantified using microCT. Encapsulated hMSCs reduced articular cartilage degeneration and subchondral bone remodeling. A multiplexed immunoassay panel was used to profile the in vitro secretome of hMSCs in response to IL-1ß. Nonencapsulated hMSCs showed an indiscriminate increase in all cytokines in response to IL-1ß while encapsulated hMSCs showed a targeted secretory response with increased expression of pro-inflammatory (IL-1ß, IL-6, IL-7, IL-8), anti-inflammatory (IL-1RA), and chemotactic (G-CSF, MDC, IP10) cytokines. These data show that sodium alginate microencapsulation can modulate hMSC paracrine signaling and enhance the therapeutic efficacy of the hMSCs in treating established OA. This cytokine profile provides a foundation for the identification of key factors affecting the overall potency of hMSC therapeutics for OA. STATEMENT OF SIGNIFICANCE: While there has been considerable interest in material based MSC encapsulation for treatment of OA, there are critical gaps in our translational understanding of these biomaterial-based technologies for OA. More specifically, previous studies have several important limitations: (1) they have been largely focused on preventing OA development, which limits their translational utility and (2) little prior work has been done to delineate potential routes/mechanisms by which material encapsulation alters MSC therapeutic action. In our manuscript, we aimed to fill these gaps in knowledge by testing the hypotheses that: (1) hMSC encapsulation can attenuate established disease progression, which is a more clinically relevant scenario and (2) hMSC encapsulation significantly changes the secreted paracrine factors from hMSCs.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Osteoartritis , Alginatos , Cartílago Articular/metabolismo , Citocinas/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/metabolismo , Osteoartritis/terapia , Comunicación Paracrina
14.
Connect Tissue Res ; 63(1): 16-27, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820456

RESUMEN

Purpose: Mechanical loading of bone defects through rehabilitation is a promising approach to stimulate repair and reduce nonunion risk; however, little is known about how therapeutic mechanical stimuli modulate early-stage repair before mineralized bone formation. The objective of this study was to investigate the early effects of osteogenic loading on cytokine expression and angiogenesis during the first 3 weeks of BMP-2 mediated segmental bone defect repair.Materials and Methods: A rat model of BMP-2 mediated bone defect repair was subjected to an osteogenic mechanical loading protocol using ambulatory rehabilitation and a compliant, load-sharing fixator with an integrated implantable strain sensor. The effect of fixator load-sharing on local tissue strain, angiogenesis, and cytokine expression was evaluated.Results: Using sensor readings for local measurements of boundary conditions, finite element simulations showed strain became amplified in remaining soft tissue regions between 1 and 3 weeks (Week 3: load-sharing: -1.89 ± 0.35% and load-shielded: -1.38 ± 0.35% vs. Week 1: load-sharing: -1.54 ± 0.17%; load-shielded: -0.76 ± 0.06%). Multivariate analysis of cytokine arrays revealed that load-sharing significantly altered expression profiles in the defect tissue at 2 weeks compared to load-shielded defects. Specifically, loading reduced VEGF (p = 0.052) and increased CXCL5 (LIX) levels. Subsequently, vascular volume in loaded defects was reduced relative to load-shielded defects but similar to intact bone at 3 weeks. Endochondral bone repair was also observed histologically in loaded defects at 3 weeks.Conclusions: Together, these results demonstrate that moderate ambulatory strains previously shown to stimulate bone regeneration significantly alter early angiogenic and cytokine signaling and may promote endochondral ossification.


Asunto(s)
Proteína Morfogenética Ósea 2 , Osteogénesis , Animales , Regeneración Ósea/fisiología , Osteogénesis/fisiología , Prótesis e Implantes , Ratas
15.
J Biomed Opt ; 26(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34881527

RESUMEN

SIGNIFICANCE: Changes in interstitial fluid clearance are implicated in many diseases. Using near-infrared (NIR) imaging with properly sized tracers could enhance our understanding of how venous and lymphatic drainage are involved in disease progression or enhance drug delivery strategies. AIM: We investigated multichromatic NIR imaging with multiple tracers to assess in vivo microvascular clearance kinetics and pathways in different tissue spaces. APPROACH: We used a chemically inert IR Dye 800CW (D800) to target venous capillaries and a purified conjugate of IR dye 680RD with 40 kDa PEG (P40D680) to target lymphatic capillaries in vivo. Optical imaging settings were validated and tuned in vitro using tissue phantoms. We investigated multichromatic NIR imaging's utility in two in vivo tissue beds: the mouse tail and rat knee joint. We then tested the ability of the approach to detect interstitial fluid perturbations due to exercise. RESULTS: In an in vitro simulated tissue environment, free dye and PEG mixture allowed for simultaneous detection without interference. In the mouse tail, co-injected NIR tracers cleared from the interstitial space via distinct routes, suggestive of lymphatic and venous uptake mechanisms. In the rat knee, we determined that exercise after injection transiently increased lymphatic drainage as measured by lower normalized intensity immediately after exercise, whereas exercise pre-injection exhibited a transient delay in clearance from the joint. CONCLUSIONS: NIR imaging enables simultaneous imaging of lymphatic and venous-mediated fluid clearance with great sensitivity and can be used to measure temporal changes in clearance rates and pathways.


Asunto(s)
Vasos Linfáticos , Animales , Pruebas Diagnósticas de Rutina , Líquido Extracelular , Vasos Linfáticos/diagnóstico por imagen , Ratones , Imagen Óptica , Ratas , Venas
16.
Transl Res ; 236: 17-34, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34161876

RESUMEN

Following injury, the oral mucosa undergoes complex sequences of biological healing processes to restore homeostasis. While general similarities exist, there are marked differences in the genomics and kinetics of wound healing between the oral cavity and cutaneous epithelium. The lack of successful therapy for oral mucosal wounds has influenced clinicians to explore alternative treatments and potential autotherapies to enhance intraoral healing. The present in-depth review discusses current gold standards for oral mucosal wound healing and compares endogenous factors that dictate the quality of tissue remodeling. We conducted a review of the literature on in vivo oral wound healing models and emerging regenerative therapies published during the past twenty years. Studies were evaluated by injury models, therapy interventions, and outcome measures. The success of therapeutic approaches was assessed, and research outcomes were compared based on current hallmarks of oral wound healing. By leveraging therapeutic advancements, particularly within in cell-based biomaterials and immunoregulation, there is great potential for translational therapy in oral tissue regeneration.


Asunto(s)
Mucosa Bucal/patología , Medicina Regenerativa , Cicatrización de Heridas , Animales , Modelos Animales de Enfermedad , Epitelio/patología , Humanos , Andamios del Tejido/química
17.
Front Bioeng Biotechnol ; 9: 650289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816455

RESUMEN

Volumetric muscle loss (VML) injuries after extremity trauma results in an important clinical challenge often associated with impaired healing, significant fibrosis, and long-term pain and functional deficits. While acute muscle injuries typically display a remarkable capacity for regeneration, critically sized VML defects present a dysregulated immune microenvironment which overwhelms innate repair mechanisms leading to chronic inflammation and pro-fibrotic signaling. In this series of studies, we developed an immunomodulatory biomaterial therapy to locally modulate the sphingosine-1-phosphate (S1P) signaling axis and resolve the persistent pro-inflammatory injury niche plaguing a critically sized VML defect. Multiparameter pseudo-temporal 2D projections of single cell cytometry data revealed subtle distinctions in the altered dynamics of specific immune subpopulations infiltrating the defect that were critical to muscle regeneration. We show that S1P receptor modulation via nanofiber delivery of Fingolimod (FTY720) was characterized by increased numbers of pro-regenerative immune subsets and coincided with an enriched pool of muscle stem cells (MuSCs) within the injured tissue. This FTY720-induced priming of the local injury milieu resulted in increased myofiber diameter and alignment across the defect space followed by enhanced revascularization and reinnervation of the injured muscle. These findings indicate that localized modulation of S1P receptor signaling via nanofiber scaffolds, which resemble the native extracellular matrix ablated upon injury, provides great potential as an immunotherapy for bolstering endogenous mechanisms of regeneration following VML injury.

18.
Acta Biomater ; 127: 180-192, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823326

RESUMEN

Successful bone healing in severe trauma depends on early revascularization to restore oxygen, nutrient, growth factor, and progenitor cell supply to the injury. Therapeutic angiogenesis strategies have therefore been investigated to promote revascularization following severe bone injuries; however, results have been inconsistent. This is the first study investigating the effects of dual angiogenic growth factors (VEGF and PDGF) with low-dose bone morphogenetic protein-2 (BMP-2; 2.5 µg) on bone healing in a clinically challenging composite bone-muscle injury model. Our hydrogel-based delivery systems demonstrated a more than 90% protein entrapment efficiency and a controlled simultaneous release of three growth factors over 28 days. Co-stimulation of microvascular fragment constructs with VEGF and PDGF promoted vascular network formation in vitro compared to VEGF or PDGF alone. In an in vivo model of segmental bone and volumetric muscle loss injury, combined VEGF (5 µg) and PDGF (7.5 µg or 15 µg) delivery with a low dose of BMP-2 significantly enhanced regeneration of vascularized bone compared to BMP-2 treatment alone. Notably, the regenerated bone mechanics reached ~60% of intact bone, a value that was previously only achieved by delivery of high-dose BMP-2 (10 µg) in this injury model. Overall, sustained delivery of VEGF, PDFG, and BMP-2 is a promising strategy to promote functional vascularized bone tissue regeneration following severe composite musculoskeletal injury. Although this study is conducted in a clinically relevant composite injury model in rats using a simultaneous release strategy, future studies are necessary to test the regenerative potential of spatiotemporally controlled delivery of triple growth factors on bone healing using large animal models. STATEMENT OF SIGNIFICANCE: Volumetric muscle loss combined with delayed union or non-union bone defect causes deleterious effects on bone regeneration even with the supplementation of bone morphogenetic protein-2 (BMP-2). In this study, the controlled delivery of dual angiogenic growth factors (vascular endothelial growth factor [VEGF] + Platelet-derived growth factor [PDGF]) increases vascular growth in vitro. Co-delivering VEGF+PDGF significantly increase the bone formation efficacy of low-dose BMP-2 and improves the mechanics of regenerated bone in a challenging composite bone-muscle injury model.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Regeneración Ósea , Sistema Musculoesquelético/lesiones , Animales , Huesos , Hidrogeles/farmacología , Osteogénesis , Factor de Crecimiento Derivado de Plaquetas/farmacología , Ratas , Factor A de Crecimiento Endotelial Vascular/farmacología
19.
Polymers (Basel) ; 13(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808295

RESUMEN

Current strategies for regeneration of large bone fractures yield limited clinical success mainly due to poor integration and healing. Multidisciplinary approaches in design and development of functional tissue engineered scaffolds are required to overcome these translational challenges. Here, a new generation of hyperelastic bone (HB) implants, loaded with superparamagnetic iron oxide nanoparticles (SPIONs), are 3D bioprinted and their regenerative effect on large non-healing bone fractures is studied. Scaffolds are bioprinted with the geometry that closely correspond to that of the bone defect, using an osteoconductive, highly elastic, surgically friendly bioink mainly composed of hydroxyapatite. Incorporation of SPIONs into HB bioink results in enhanced bacteriostatic properties of bone grafts while exhibiting no cytotoxicity. In vitro culture of mouse embryonic cells and human osteoblast-like cells remain viable and functional up to 14 days on printed HB scaffolds. Implantation of damage-specific bioprinted constructs into a rat model of femoral bone defect demonstrates significant regenerative effect over the 2-week time course. While no infection, immune rejection, or fibrotic encapsulation is observed, HB grafts show rapid integration with host tissue, ossification, and growth of new bone. These results suggest a great translational potential for 3D bioprinted HB scaffolds, laden with functional nanoparticles, for hard tissue engineering applications.

20.
Nano Lett ; 21(1): 875-886, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33395313

RESUMEN

Monoclonal antibodies (mAb) have had a transformative impact on treating cancers and immune disorders. However, their use is limited by high development time and monetary cost, manufacturing complexities, suboptimal pharmacokinetics, and availability of disease-specific targets. To address some of these challenges, we developed an entirely synthetic, multivalent, Janus nanotherapeutic platform, called Synthetic Nanoparticle Antibodies (SNAbs). SNAbs, with phage-display-identified cell-targeting ligands on one "face" and Fc-mimicking ligands on the opposite "face", were synthesized using a custom, multistep, solid-phase chemistry method. SNAbs efficiently targeted and depleted myeloid-derived immune-suppressor cells (MDSCs) from mouse-tumor and rat-trauma models, ex vivo. Systemic injection of MDSC-targeting SNAbs efficiently depleted circulating MDSCs in a mouse triple-negative breast cancer model, enabling enhanced T cell and Natural Killer cell infiltration into tumors. Our results demonstrate that SNAbs are a versatile and effective functional alternative to mAbs, with advantages of a plug-and-play, cell-free manufacturing process, and high-throughput screening (HTS)-enabled library of potential targeting ligands.


Asunto(s)
Nanopartículas Multifuncionales , Células Supresoras de Origen Mieloide , Nanopartículas , Animales , Anticuerpos Monoclonales , Humanos , Células Asesinas Naturales , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...