Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Adv Mater ; : e2307881, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38009658

RESUMEN

Additive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre-prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room-temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer-wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze-drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0-74.8%) and densities (0.345-0.684 g cm-3 ), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa.

2.
Small ; 19(32): e2303188, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37165302

RESUMEN

Vat photopolymerization (VP) Additive Manufacturing (AM), in which UV light is selectively applied to cure photo-active polymers into complex geometries with micron-scale resolution, has a limited selection of aliphatic thermoset materials that exhibit relatively poor thermal performance. Ring-opening dianhydrides with acrylate-containing nucleophiles yielded diacrylate ester-dicarboxylic acids that enabled photo-active polyimide (PI) precursors, termed polysalts, upon neutralization with an aromatic diamine in solution. In situ FTIR spectroscopy coupled with a solution and photo-rheological measurements revealed a previously unknown time-dependent instability of 4,4'-oxydianiline (ODA) polysalts due to an aza-Michael addition. Replacement of the electron-donating ether-containing diamine with an electron withdrawing sulfone-containing monomer, e.g., 4,4'-diaminodiphenyl sulfone (DDS), prohibited the aza-Michael addition of the aromatic amine to the activated acrylate double bond. Novel DDS polysalt photocurable solutions are similarly analyzed and validated long-term stability, which enabled reproducible printing of polyimide organogel intermediates. Subsequent VP AM afforded 3-dimensional (3D) structures of intricate complexity and excellent surface finish, as demonstrated with scanning electron microscopy. In addition, the novel PMDA-HEA/DDS solution enabled the production of the first beam latticed architecture comprised of all-aromatic polyimide. The versatility of a polysalt platform for multi-material printing is further demonstrated by printing parts with alternating polysalt compositions.

3.
J Mech Behav Biomed Mater ; 125: 104938, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740012

RESUMEN

Capitalizing on features including high resolution, smooth surface finish, large build volume, and simultaneous multi-color/multi-material printing, material jetting additive manufacturing enables the fabrication of full-scale anatomic models. The ability to print materials that resemble relevant, compliant tissues has especially motivated implementation of material jetting for patient-specific surgical planning or training models. In an effort to broaden the material selection for the material jetting process, and to provide materials that more closely mimic the functional needs for a wider variety of tissues, a composite material system is explored that uses non-curing fluid dispersed into a photo-curable medium. The material properties of the composites are examined through both thermal and mechanical analysis (dynamic mechanical analysis, Shore hardness testing, puncture testing, and tensile testing). Higher contributions of non-curing fluid generally reduce part strength and stiffness, and exponential and second-order polynomial expressions are appropriate fits for many of the mechanical properties as functions of non-curing fluid concentration. Through the fundamental exploration of the impact of an added diluent on material properties, the study advances knowledge on the process-property relationship for multi-material jetting. Additionally, better understanding of the mechanical property space offered by these materials will expand the capabilities of material jetting in the context of biomedical applications. The collection of mechanical properties serve as reference data sets to facilitate quicker screening for tissue-mimicking, medical models.

4.
ACS Appl Mater Interfaces ; 13(40): 48061-48070, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34587443

RESUMEN

Recent advances in vat photopolymerization (VP) additive manufacturing of fully aromatic polyimides employed photoreactive high-molecular-weight precursors dissolved at modest loadings (<20 wt %) in organic solvent. These earlier efforts revealed high isotropic shrinkage, approaching 52% on a linear basis while converting to the desired polyimide. To increase the polyimide precursor concentration and decrease shrinkage during VP processing of high-performance polyimides, photoreactive fully aromatic polyimide and thermoplastic polyetherimide (PEI) supramolecular salt precursors now serve as versatile alternatives. Both pyromellitic dianhydride-4,4'-oxydianiline (PMDA-ODA) and 4,4'-(4,4'-isopropylidene-diphenoxy)diphthalic anhydride-meta phenylene diamine (BPADA-mPD) supramolecular dicarboxylate-diammonium salts, termed polysalts, provided prerequisite rheological performance and photoreactivity for VP. Solutions (50 wt %) of both photoactive polysalts exhibited viscosities more than two orders of magnitude lower than previously reported polyimide precursor solutions for VP. In addition, VP of 50 wt % polysalt solutions yielded high resolution, self-supporting organogel structures. During thermal postprocessing to the desired fully aromatic polyimide and PEI, photocrosslinked polysalt organogels exhibited retention of part shape in concert with linear isotropic shrinkage of only 26%, the lowest reported value using organogel strategies for VP of fully aromatic polyimides. Furthermore, the imidized structures exhibited comparable thermal and mechanical properties to analogous polyimides synthesized using classical methodologies for 2D films. The combination of facile synthesis and increased precursor concentrations designates polysalt polyimide precursors as a versatile platform for additive manufacturing of well-defined 3D polyimide structures.

5.
ACS Appl Mater Interfaces ; 13(32): 38680-38687, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34369767

RESUMEN

Relative to other additive manufacturing modalities, vat photopolymerization (VP) offers designers superior surface finish, feature resolution, and throughput. However, poor interlayer network formation can limit a VP-printed part's tensile strength along the build axis. We demonstrate that the incorporation of carbamate bonds capable of undergoing dissociative exchange reactions provides improved interlayer network formation in VP-printed urethane acrylate polymers. In the presence of dibutyltin dilaurate catalyst, the exchange of these carbamate bonds enables rapid stress relaxation with an activation energy of 133 kJ/mol, consistent with a dissociative bond exchange process. Annealed XY tensile samples containing a catalyst demonstrate a 25% decrease in Young's modulus, attributed to statistical changes in network topology, while samples without a catalyst show no observable effect. Annealed ZX tensile samples printed with layers perpendicular to tensile load demonstrate an increase in elongation at break, indicative of self-healing. The strain at break for samples containing a catalyst increases from 33.9 to 56.0% after annealing but decreases from 48.1 to 32.1% after annealing in samples without a catalyst. This thermally activated bond exchange process improves the performance of VP-printed materials via self-healing across layers and provides a means to change Young's modulus after printing. Thus, the incorporation of carbamate bonds and appropriate catalysts in the VP-printing process provides a robust platform for enhancing material properties and performance.

6.
J Manuf Syst ; 60: 762-773, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33551537

RESUMEN

The COVID-19 pandemic has disrupted the supply chain for personal protective equipment (PPE) for medical professionals, including N95-type respiratory protective masks. To address this shortage, many have looked to the agility and accessibility of additive manufacturing (AM) systems to provide a democratized, decentralized solution to producing respirators with equivalent protection for last-resort measures. However, there are concerns about the viability and safety in deploying this localized download, print, and wear strategy due to a lack of commensurate quality assurance processes. Many open-source respirator designs for AM indicate that they do not provide N95-equivalent protection (filtering 95% of SARS-CoV-2 particles) because they have either not passed aerosol generation tests or not been tested. Few studies have quantified particle transmission through respirator designs outside of the filter medium. This is concerning because several polymer-based AM processes produce porous parts, and inherent process variation between printers and materials also threaten the integrity of tolerances and seals within the printed respirator assembly. No study has isolated these failure mechanisms specifically for respirators. The goal of this paper is to measure particle transmission through printed respirators of different designs, materials, and AM processes. The authors compare the performance of printed respirators to N95 respirators and cloth masks. Respirators in this study printed using desktop- and industrial-scale fused filament fabrication processes and industrial-scale powder bed fusion processes were not sufficiently reliable for widespread distribution and local production of N95-type respiratory protection. Even while assuming a perfect seal between the respirator and the user's face, although a few respirators provided >90% efficiency at the 100-300 nm particle range, almost all printed respirators provided <60% filtration efficiency. Post-processing procedures including cleaning, sealing surfaces, and reinforcing the filter cap seal generally improved performance, but the printed respirators showed similar performance to various cloth masks. The authors further explore the process-driven aspects leading to low filtration efficiency. Although the design/printer/material combination dictates the AM respirator performance, the identified failure modes originate from system-level constraints and are therefore generalizable across multiple AM processes. Quantifying the limitations of AM in producing N95-type respiratory protective masks advances understanding of AM systems toward the development of better part and machine designs to meet the needs of reliable, functional, end-use parts.

7.
ACS Macro Lett ; 10(4): 412-418, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35549232

RESUMEN

Fully aromatic polyimides are amenable to efficient carbonization in thin two-dimensional (2D) films due to a complement of aromaticity and planarity of backbone repeating units. However, repeating unit rigidity traditionally imposes processing limitations, restricting many fully aromatic polyimides, e.g., pyromellitic dianhydride with 4,4'-oxidianiline (PMDA-ODA) polyimides, to a 2D form factor. Recently, research efforts in our laboratories enabled additive manufacturing of micron-scale resolution PMDA-ODA polyimide objects using vat photopolymerization (VP) and ultraviolet-assisted direct ink write (UV-DIW) following careful thermal postprocessing of the three-dimensional (3D) organogel precursors to 400 °C. Further thermal postprocessing of printed objects to 1000 °C induced pyrolysis of the PMDA-ODA objects to disordered carbon. The pyrolyzed objects retained excellent geometric resolution, and Raman spectroscopy displayed characteristic disordered (D) and graphitic (G) carbon bands. Scanning electron microscopy probed the cross-sectional homogeneity of the carbonized samples, revealing an absence of pore formation during carbonization. Likewise, impedance analysis of carbonized specimens indicated only a moderate decrease in conductivity compared to thin films that were pyrolyzed using an identical carbonization process. Facile pyrolysis of PMDA-ODA objects now enables the production of carbonaceous monoliths with complex and predictable three-dimensional geometries using commercially available starting materials.


Asunto(s)
Impresión Tridimensional , Pirólisis , Carbono/química , Estudios Transversales , Espectrometría Raman
8.
J Mech Behav Biomed Mater ; 110: 103971, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763836

RESUMEN

Applications of additive manufacturing (commonly referred to as 3D printing) in direct fabrication of models for pre-surgical planning, functional testing, and medical training are on the rise. However, one current limitation to the accuracy of models for cardiovascular procedural training is a lack of printable materials that accurately mimic human tissue. Most of the available elastomeric materials lack mechanical properties representative of human tissues. To address the gap, the authors explore the multi-material capability of material jetting additive manufacturing to combine non-curing and photo-curing inks to achieve material properties that more closely replicate human tissues. The authors explore the impact of relative material concentration on tissue-relevant properties from puncture and tensile testing under submerged conditions. Further, the authors demonstrate the ability to mimic the mechanical properties of the fossa ovalis, which proves beneficial for accurately simulating transseptal punctures. A fossa ovalis mimic was printed and assembled within a full patient-specific heart model for validation, where it exhibited accuracy in both mechanical properties and geometry. The explored material combination provides the opportunity to fabricate future medical models that are more realistic and better suited for pre-surgical planning and medical student training. This will ultimately guide safer, more efficient practices.


Asunto(s)
Impresión Tridimensional , Punciones , Humanos , Tinta
9.
ACS Appl Mater Interfaces ; 12(28): 32006-32016, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32520520

RESUMEN

This manuscript describes the versatility of highly directional, noncovalent interactions, i.e., quadruple hydrogen bonding (QHB), to afford novel polyurea segmented supramolecular polymers for melt extrusion three-dimensional (3D) printing processes. The molecular design of the polyurea elastomers features (1) flexible polyether segments and relatively weak urea hydrogen-bonding sites in the soft segments to provide elasticity and toughness, and (2) strong ureido-cytosine (UCyt) QHB in the hard segments to impart enhanced mechanical integrity. The resulting polyureas were readily compression-molded into mechanically-robust, transparent, and creasable films. Optimization of polyurea composition offered a rare combination of high tensile strength (95 MPa), tensile elongation (788% strain), and toughness (94 MJ/m3), which are superior to a commercially available Ninjaflex elastomer. The incorporation of QHB facilitated melt processability, where hydrogen bonding dissociation provided low viscosities at printing temperatures. During cooling, directional self-assembly of UCyt QHB facilitated the solidification process and contributed to part fidelity with the formation of a robust physical network. The printed objects displayed high layer fidelity, smooth surfaces, minimal warpage, and complex geometries. The presence of highly directional QHB effectively diminished mechanical anisotropy, and the printed samples exhibited comparable Young's moduli along (x-y direction, 0°) and perpendicular to (z-direction, 90°) the layer direction. Remarkably, the printed samples exhibited ultimate tensile strains approaching 500% in the z-direction prior to failure, which was indicative of improved interlayer adhesion. Thus, this design paradigm, which is demonstrated for novel polyurea copolymers, suggests the potential of supramolecular polymers with enhanced mechanical performance, melt processability, recyclability, and improved interlayer adhesion for melt extrusion additive manufacturing processes.

10.
ACS Appl Mater Interfaces ; 12(9): 10918-10928, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32028758

RESUMEN

Vat photopolymerization (VP) additive manufacturing fabricates intricate geometries with excellent resolution; however, high molecular weight polymers are not amenable to VP due to concomitant high solution and melt viscosities. Thus, a challenging paradox arises between printability and mechanical performance. This report describes concurrent photopolymer and VP system design to navigate this paradox with the unprecedented use of polymeric colloids (latexes) that effectively decouple the dependency of viscosity on molecular weight. Photocrosslinking of a continuous-phase scaffold, which surrounds the latex particles, combined with in situ computer-vision print parameter optimization, which compensates for light scattering, enables high-resolution VP of high molecular weight polymer latexes as particle-embedded green bodies. Thermal post-processing promotes coalescence of the dispersed particles throughout the scaffold, forming a semi-interpenetrating polymer network without loss in part resolution. Printing a styrene-butadiene rubber latex, a previously inaccessible elastomer composition for VP, exemplified this approach and yielded printed elastomers with precise geometry and tensile extensibilities exceeding 500%.

11.
ACS Appl Mater Interfaces ; 11(27): 23938-23947, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252452

RESUMEN

Fabrication of personalized dosage oral pharmaceuticals using additive manufacturing (AM) provides patients with customizable, locally manufactured, and cost-efficient tablets, while reducing the probability of side effects. Binder jetting AM has potential for fabrication of customized dosage tablets, but the resulting products lack in strength due to solely relying on the binder to produce structural integrity. The selection of polymeric binders is also limited due to viscosity restraints, which limits molecular weight and concentration. To investigate and ameliorate these limitations, this article reports a comprehensive study of linear and 4-arm star poly(vinyl pyrrolidone) (PVP) over a range of molecular weights as polymeric binders for binder jetting AM and their effect on physical tablet properties. Formulation of varying molecular weights and concentrations of linear and 4-arm star PVP in deionized water and subsequent jetting revealed relationships between the critical overlap concentrations (C*) and jettability on binder jetting systems with thermal inkjet printheads. After printing with a commercially available ZCorp Spectrum Z510 printer with an HP11 printhead with a lactose and powdered sugar powder bed, subsequent measurement of compressive strength, compressive modulus, and porosity revealed structure-property relationships between molecular weight, polymer concentration, and linear and 4-arm star architectures with physical properties of binder jetted tablets. This study elucidated that the dominating factor to increase compressive strength of a tablet is dependent on the weight percent of the polymer in the binder, which filled interstitial voids between powder particles. Because 4-arm star polymers have lower solution viscosities compared to linear analogues at the same molecular weights, they were jettable at higher concentrations, thus producing the strongest tablets at a compressive strength of 1.2 MPa. Finally, the inclusion of an active pharmaceutical ingredient (API), acetaminophen, revealed maintenance of the tablet physical properties across 5-50 total wt % API in each tablet.


Asunto(s)
Acetaminofén/química , Excipientes/química , Povidona/química , Comprimidos
12.
Science ; 362(6420): 1244-1245, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30545873
13.
ACS Appl Mater Interfaces ; 10(41): 34828-34833, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30289680

RESUMEN

All-aromatic polyimides have degradation temperatures above 500 °C, excellent mechanical strength, and chemical resistance, and are thus ideal polymers for high-temperature applications. However, their all-aromatic structure impedes additive manufacturing (AM) because of the lack of melt processability and insolubility in organic solvents. Recently, our group demonstrated the design of UV-curable polyamic acids (PAA), the precursor of polyimides, to enable their processing using vat photopolymerization AM. This work leverages our previous synthetic strategy and combines it with the high solution viscosity of nonisolated PAA to yield suitable UV-curable inks for UV-assisted direct ink write (UV-DIW). UV-DIW enabled the design of complex three-dimensional structures comprising of thin features, such as truss structures. Dynamic mechanical analysis of printed and imidized specimens confirmed the thermomechanical properties typical of all-aromatic polyimides, showing a storage modulus above 1 GPa up to 400 °C. Processing polyimide precursors via DIW presents opportunity for multimaterial printing of multifunctional components, such as three-dimensional integrated electronics.

14.
Nanotechnology ; 29(39): 395706, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-29968575

RESUMEN

Binder jetting AM has been used to fabricate metal parts by first jetting a binder into a powder bed, and then sintering the resulting green part wherein the binder is removed and the metal particles are fused. Sintered part properties can be enhanced when nanoparticles are suspended into a solvent-based organic binder, as the inkjetted nanoparticles can reduce sintering shrinkage and increase mechanical strength. In this work, the authors also used a nanoparticle suspension without organic adhesives as a means for binding metal powder bed particles together. After being deposited into the powder particles' interstices, the jetted nanoparticles are sintered at a temperature lower than the powder sintering temperature via a heated powder bed, to provide strength to the printed green part. Compared to organic binders, the use of jetted nanoparticles provided a permanent bonding which improved the structural integrity of printed parts during sintering.

15.
Acta Biomater ; 74: 90-111, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29753139

RESUMEN

Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. STATEMENT OF SIGNIFICANCE: Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds.


Asunto(s)
Procesos Fotoquímicos , Impresión Tridimensional , Andamios del Tejido/química , Animales , Proliferación Celular , Supervivencia Celular , Humanos , Porosidad
16.
ACS Macro Lett ; 7(4): 493-497, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35619348

RESUMEN

Polyamic acid (PAA) salts are amenable to photocuring additive manufacturing processes of all-aromatic polyimides. Due to an all-aromatic structure, these high-performance polymers are exceptionally chemically and thermally stable but are not conventionally processable in their imidized form. The facile addition of 2-(dimethylamino)ethyl methacrylate (DMAEMA) to commercially available poly(4,4'-oxydiphenylene pyromellitamic acid) (PMDA-ODA PAA) afforded ultraviolet curable PAA salt solutions. These readily prepared solutions do not require multistep synthesis, exhibited fast gel times (<5 s), and rendered high G' gel-state moduli. Vat photopolymerization 3D printing afforded self-supporting organogels. Subsequent thermal treatment rendered the cross-linked PAA precursor to all-aromatic PMDA-ODA polyimide. This fast and facile strategy makes PMDA-ODA polyimides accessible in three dimensions and offers impact on aerospace or automotive technologies.

17.
Biomacromolecules ; 18(9): 2669-2687, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28762718

RESUMEN

Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.


Asunto(s)
Polímeros/química , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Animales , Humanos , Andamios del Tejido/química
18.
Adv Mater ; 29(31)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28626968

RESUMEN

High-performance, all-aromatic, insoluble, engineering thermoplastic polyimides, such as pyromellitic dianhydride and 4,4'-oxydianiline (PMDA-ODA) (Kapton), exhibit exceptional thermal stability (up to ≈600 °C) and mechanical properties (Young's modulus exceeding 2 GPa). However, their thermal resistance, which is a consequence of the all-aromatic molecular structure, prohibits processing using conventional techniques. Previous reports describe an energy-intensive sintering technique as an alternative technique for processing polyimides with limited resolution and part fidelity. This study demonstrates the unprecedented 3D printing of PMDA-ODA using mask-projection stereolithography, and the preparation of high-resolution 3D structures without sacrificing bulk material properties. Synthesis of a soluble precursor polymer containing photo-crosslinkable acrylate groups enables light-induced, chemical crosslinking for spatial control in the gel state. Postprinting thermal treatment transforms the crosslinked precursor polymer to PMDA-ODA. The dimensional shrinkage is isotropic, and postprocessing preserves geometric integrity. Furthermore, large-area mask-projection scanning stereolithography demonstrates the scalability of 3D structures. These unique high-performance 3D structures offer potential in fields ranging from water filtration and gas separation to automotive and aerospace technologies.

19.
Biomaterials ; 140: 170-188, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28651145

RESUMEN

This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the µm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types.


Asunto(s)
Materiales Biocompatibles/química , Bioimpresión/métodos , Polímeros/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Bioimpresión/instrumentación , Humanos , Polimerizacion , Impresión Tridimensional/instrumentación , Ingeniería de Tejidos/instrumentación
20.
ACS Appl Mater Interfaces ; 9(14): 12324-12331, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28329442

RESUMEN

Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca2+, Mg2+, and Zn2+) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG8k-co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA